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Background

 High order numerics (5t order and higher) has become
more common in research, and is beginning to appear in
industrial uses of CFD.

e Overset gridding and overset solver techniques is one of
several enabling technologies to evaluating flow field
around complex (and moving) geometries.

e Use of overset is still a tool for “experts” (or researchers),
but is slowly penetrating into industry

Purpose of the Presentation

* |gnite discussion of the often overlooked issue of
interpolation accuracy and its effects with high order solvers

e Present interesting findings through simple, and not so
simple, computational examples
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Limitations of this Study
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* CFD on block structured overset meshes

(for use in FV/FD codes)

e Two solvers:

IR NN N R B
BEEER

» In-house Penn State code (PSU)
» OVERFLOW 2.2 (OF)
e Overset domain connectivity determined using Suggar++
and read into the solvers using DiRTLib
e Explicit isoparametric Lagrangian interpolation method to

determine donor weights
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For generally spaced source pts:
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Standard Lagrangian Interpolation (SLI)
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If source pts are equally spaced, Ax=constant:
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Isoparametric Lagrangian Interpolation (ILI)
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Isoparametric Lagrangian Interpolation (ILI)
For non-equally spaced source points.

2 % 3 4
—I—I HIII—

N-1 (_1)N+i—1 N—-1
£(6) = ZO RO R =y | | @D

l=0,l#1

where o0is found by minimizing the functional:
N—-1
F(x;, %, 8) = Z R(8)x; —% = 0
i=0

But what about loss of accuracy???
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Example: Interpolate a cubic function using
uniform source grid
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Example: Interpolate a cubic function using
uniform source grid

Stencil size
N2 — T4
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100+

Example: Interpolate a cubic function using
quadratic-ly stretched source grid
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Example: Interpolate a cubic function using
qguadraticly stretched source grid
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Examination of 1D interpolation error using different...

function types, donor stencils,
221? Equation Uniform spaced source:

1 f(x)=10x N2 H ©OoN
2 f(x)=4x"+10x N4 L H Oon H
3 f(r) 0.2x +4x* +10x N6 H 0 BN B BN
A F(x)=0.6x" +02x +4x° +10x Quadratic spaced source:
5 £ (x)=08x"+0.6x +0.2x +4x° +10x N2 H on
6 f(x)=35e" N4 HEHORNR H
7 ftxj:5(sinx)/x N6 EEEOE N N

and interpolation methods.

Standard Lagrangian (SLI) Isoparametrlc Lagrangian (ILI)
N-1
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Interpolation error
from uniform
source grid

Some observations:

For polynomial functions:
* N should be > function order

For non-polynomial functions:
e Error reduces with higher N

Isoparametric Lagrangian

Standard Lagrangian

Basis Maximum Maximum Maximum Maximum
Function Stencil Difference Relative Difference Relative
Number size, N Error: Error (%): Error: Error (%):

1 2 7.11E-15 1.89E-14 7.11E-15 1.89E-14
1 4 7.11E-15 2.11E-14 7.11E-15 2.11E-14
1 6 7.11E-15 2.19E-14 7.11E-15 2.19E-14
2 2 1.17E-02 5.50E-02 1.17E-02 5.50E-02
2 4 1.42E-14 3.32E-14 1.42E-14 3.32E-14
2 6 1.42E-14 3.95E-14 1.42E-14 3.95E-14
3 2 1.84E-02 1.67E-02 1.84E-02 1.67E-02
3 4 1.42E-14 1.86E-14 1.42E-14 1.86E-14
3 6 2.84E-14 3.07E-14 2.84E-14 3.07E-14
4 2 1.71E-01 6.95E-02 1.71E-01 6.95E-02
4 4 6.01E-05 4.14E-05 6.01E-05 4.14E-05
4 6 4.26E-14 4.43E-14 4.26E-14 4.43E-14
5 2 1.46E+00 1.54E-01 1.46E+00 1.54E-01
5 4 1.58E-03 1.68E-04 1.58E-03 1.68E-04
5 6 1.71E-13 3.66E-14 1.71E-13 3.66E-14

7 2 1.82E-03 2.10E-01 1.82E-03 2.10E-01
7 4 3.62E-06 4.19E-04 3.62E-06 4.19E-04
7 6 8.61E-09 9.97E-07 8.61E-09 9.97E-07
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Interpolation error
from quadratic
source grid

Some observations:

For polynomial functions:
e Error reduces with higher N

For non-polynomial functions:
e Error reduces with higher N
e |LI sometimes better than SLI

What kind of function is a flow
variable (i.e u,v,w,p,e,pu,pv)?

Isoparametric Lagrangian

Standard Lagrangian

Basis Maximum Maximum Maximum Maximum
Function Stencil Difference Relative Difference Relative
Number size, N Error: Error (%): Error: Error (%):

1 2 7.11E-15 1.94E-14 7.11E-15 1.94E-14
1 4 1.00E-11 3.92E-10 1.07E-14 3.16E-14
1 6 1.00E-11 3.92E-10 1.07E-14 3.75E-14
2 2 8.81E-02 8.56E-02 8.81E-02 8.56E-02
2 4 2.46E-04 2.72E-04 1.42E-14 2.68E-14
2 6 8.12E-08 1.65E-06 1.42E-14 2.68E-14
3 2 1.38E-01 1.20E-01 1.38E-01 1.20E-01
3 4 6.30E-04 5.45E-04 2.84E-14 3.26E-14
3 6 1.26E-06 1.09E-06 2.84E-14 3.26E-14
4 2 1.29E+00 4.86E-01 1.29E+00 4.86E-01
4 4 1.79E-02 6.77E-03 2.77E-03 1.04E-03
4 6 1.49E-04 5.62E-05 5.68E-14 3.44E-14
5 2 1.10E+01 1.04E+00 1.10E+01 1.04E+00
5 4 2.61E-01 2.46E-02 7.33E-02 6.92E-03
5 6 4.22E-03 3.98E-04 2.27E-13 3.07E-14

7 2 1.37E-02 1.47E+00 1.37E-02 1.47E+00
7 4 1.21E-04 1.30E-02 1.66E-04 1.78E-02
7 6 3.58E-06 1.04E-03 2.36E-06 2.53E-04
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1-D Told Us ...

e |f your function is a polynomial, then polynomial interpolation
works great! (Duh)

e If you are using Isoparametic Lagrangian Interpolation (ILI), then
you should use a stencil wider than the order of the function.

e If the function is not a polynomial, then usually wider the stencil
the better.

 When using ILI for flow variables, all this is interpreted as:
Use an overset stencil width (N) wider than the order of the

scheme.

All these points will apply to 3-D
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Solvers

e Penn State (PSU) in-house code:
» Density based finite volume
» Roe flux based upwind scheme
» Up to 7t order accurate inviscid flux differencing
» Tailored for incompressible flows via preconditioning
» Overset via DiRTlib, also supports block-to-block

e OVERFLOW 2.2 (OF)

» Density based finite difference

» Multiple spatial and time integration schemes

» Up to 6% order accurate inviscid flux differencing

» Widely used for compressible flows, also has low Mach
preconditioning

» Overset built-in (or XINTOUT), but has been modified to
use DiRTIib in order to read high-order DCI files
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DiRTlib/Suggar++*

e DiRTlib is a library that can be linked to OVERFLOW (or any
equipped solver) that encapsulates overset interpolation and
communication to the solver by making calls to solver interface
routines that are specific to the solver.

» Gets data from solver memory for use in donor interpolations
» Puts data into solver memory for use at fringes
» Fills solver IBLANK array to define holes and fringes

e Suggar++ is a general overset grid assembly code that provides a
domain connectivity information (DCI) file to DiRTlib.

Flow Solver
Suggar++

/Dl _/?— A

----- DiRTlib

*Noack, Boger
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Relevant Features of DiRTlib/Suggar++

Suggar++
e Supports the specification of an arbitrary number of fringe
layers as is required for the solver to maintain its high-order
spatial discretization
e Can provide standard and high order (Lagrangian) weights

DiRTlib
e Supports arbitrary number of fringe layers
* Makes no assumption on the number of weights

Flow Solver
Suggar++
/5er] _/?,_7
=== DiRTIlib
<
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Standard Lagrangian Interpolation (SLI)
In Three Dimensions

N;—1Ny-—-1 Ng—l

f(x) = Z_‘ Z‘ Z Pijic (%) f (%iji)

P;ir (%) = Pi(R)P; (9P (2)

Ne-1 A~ Ny—1 . N¢—1 A
_ 1_[ (% — x;) 1—[ V= Ym) 1—[ (2 —z,)
Db Gimx) L1 (g —yp) AL (= 20)

Note: Depending on orientation of the source
points, P may be undefined.
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Isoparametric Lagrangian Interpolation (ILI)

In Three Dimensions
N¢—1Np—-1Ng—1 ¢

f&x) = Z Z Z ljk(5€)Rle( )lek((sz)f(x) 5 K
k=0 j=0 i=0

0_1)N+i—1
IN — (i + D!

N—-1
RO =a [ [ 6-D  «-

Jj=0,j#i

where ois found by minimizing the functionals:

2 i Z, ljk(5f)lek(5 )Ruk((sz)x —x=0

This is the high order Lagrangian technique implemented
In Suggar++.

><>|
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Convecting Inviscid Vortex
(PSU: incompressible; OF: isentropic, M=0.2)

Description:

e Prescribe an initial inviscid vortex subject to a uniform cross flow

 Domain: Uniform background grid, with a series of different inset
grids

* Boundary Conditions: Free stream, periodic BCs in flow direction

e Numerics: 3" 5t order accurate with N2, N4, and N6 overset
interpolation

Uint } Domain width=10
= = Q DTPHYS=0.01
S E
3 ot S
o Q Steps for one cycle=1000

Purpose:
e Examine differences in accuracy (vortex dissipation and location)
and between standard and high-order interpolation.
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2D Convecting Inviscid Vortex, Code: PSU

Vortex Dissipation, Uniform Inset Grid, 3" Order ‘
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2D Convecting Inviscid Vortex, Code: PSU
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2D Convecting Inviscid Vortex, Code: OF
Vortex Dissipation, Uniform Inset Grid, 5" Order
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Vortex Center X Vortex Center X

Vortex Center X

2D Convecting Inviscid Vortex, Code: PSU
Vortex Location, Quadratic Inset Grid, 37 Order
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Vortex Center X Vortex Center X

Vortex Center X

2D Convecting Inviscid Vortex, Code: OF

Vortex Location, Uniform
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2D Cylinder in Cross Flow With Overset Patch,
Code:OF

Description:

e Canonical Karman vortex shedding flow (laminar)

 Domain: Uniform background grid with and without oblique hole,
covered by non-uniform overset patch grid. 3 fringe layers

* Numerics: WENOM, 2"d order time(10 Newton sub its), ADI P-C

Rey, = 150
M=0.2
Laminar

Purpose:
 Compare the vortex street downstream of the patch, with the

baseline vortex street without the hole/patch
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2D Cylinder in Cross Flow With Overset Patch,

Baseline Without Downstream Patch

5t Order Space (WENOM)

2" Order Time

3 Fringe Layers

High Order Interpolation (N=6)

Code: OF

With Downstream Patch

5t Order Space (WENOM)
2" Order Time

3 Fringe Layers

Standard Interpolation (N=2)

With Downstream Patch

5t Order Space (WENOM)

2" Order Time

3 Fringe Layers

High Order Interpolation (N=6)

Normalized Vorticity ™ ***”

M _o 200

@’“”@l“_,

AL

AL=10.32

Normalized Vorticity ™ ° "

AL=10.74 (a 4% increase)

M _ 200

L

AL

Normalized Vorticity ™ * "

o

AL=10.32

M _ 200

=

AL

Conclusions:

e Grid obliqueness and stretching accentuates the need to use high-
order interpolation with 3 fringe layers to preserve WENOM

accuracy



3D Cylindrical Column in Cross Flow, Codes: PSU,OF

Description:
e Column standing on solid surface

Re, = 150

PSU: Incompress
OF: M =0.2
Laminar

Purpose:
e Examine changes in shedding frequency due to overset treatment
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3D Cylindrical Column in Cross Flow

Intentionally introduced extraneous overset grids in order to create
multiple overset boundaries

Examine flow

o at probe

point




3D Cylindrical Column in Cross Flow

z

Frequency of oscillating lateral (v) velocity:
5t Order, Overset Stencil=6 (O5N6): 0.1389 Hz

5t Order, Overset Stencil=2 (O5N2): 0.1417 Hz
A 2% change with only several overset grids!




An Examination of the Effects of Overset Interpolation Accuracy in the
Context of a High-Order CFD Solver

12th Overset Symposium, 6-9 October 2014

3D Rotor Hub, Code: PSU

Spinning notional scaled rotor tested in Water

Tunnel at PSU. Free stream = 6.5 m/s

* Interest in flow structures at locations
downstream where empennage would be
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3D Rotor Hub Close-up

Upper Spider

Main Hub Arms

Lower Spider

Swashplate
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3D Rotor Hub Test

SPIV
2DPIV . . 2D PIV
Lov | LDV - T
Near Wake Far Wake
! LoV !
II;II)\Y 3 LDV PIV |3
. SPIV | ¢
>
>
= 4 RH_b 5

= 7 RHub



3D Rotor Hub CFD

Rotor in tunnel simulated using PSU and OF codes
e 99 Structured overset blocks

e 37 order upwind bias

e Overset interpolation using N2 and N4
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Wake Oscillating Vertical Velocity Comparisons

|w|(m/s)

B PIV Data
PSU CFD, O3N2 Overset
B PSU CFD, O3N4 Overset
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High-Order Overset is Great, But it ....

e Requires more overlap in the grid system (to keep donor qual=1)

» For 3" order upwind bias, standard (N2) overset needs:

2 fringe layers, overlap=5

» For 5th order (e.g. WENO), high-order (N6) overset needs:

3 fringe layers, overlap=9!!!!

e Requires more computer time (solver and Suggar++)

e Can be susceptible to under/over shoots (just like any polynomial
. . . R
interpolation can/will do) s —

.
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Summary

e Using simple cases, it was determined that:
»High-order interpolation better preserves flow structures
across overset boundaries
»More fringe layers (3) with standard interpolation is not
sufficient. High-order interpolation and more fringe layers is
required to preserve accuracy of high-order numerics
e With increasing order of accuracy of the interpolation (N), a larger
donor stencil is needed, which in turn requires more overlap in the

overset gridding and more runtime requirements



Thank you !



