
Active Load Balancing for Overset Grid
Assembly Procedures

 Jay Sitaraman

Parallel Geometric Algorithms LLC
Associate Professor University of Wyoming

Beatrice Roget
Science and Technology Corporation

Problem Definition

• CFD simulation of complex problems (moving and
deforming multiple bodies) require overset meshes

• Overset Grid Assembly method required to identify
point types (solver, receptor, hole)

• Many existing OGA codes: PEGASUS5,
SUGGAR++/DiRTlib, CHIMPS, OVERFLOW with varying
capabilities

• OGA method should be accurate, efficient and scalable,
and fully automated.

• Two main challenges for partitioned unstructured
meshes and unstructured dual-mesh systems

 complex geometry of partition boundaries
 robustness problems for the point-localization

 Inherent load imbalance (large variation in the
types of mesh-block overlap)

 poor efficiency and scalability

PUNDIT (product of CREATE A/V)

Development history:
• Begin development in early 2008 as part of the HPC Institute for Advanced
Rotorcraft Modeling and Simulation (HIARMS)
• First production version in Q4 2008
• Integral part of CREATE A/V Helios (rotary-wing tool) from 2009
• Integral part of CREATE A/V Kestrel (fixed-wing tool) from 2010

Capabilities:
• Based on implicit hole cutting
• Fully parallel and highly automated (no user input)
• Support for node-centered/cell-centered interpolation
• Support for adaptive Cartesian grids
• In production for last 5 years (1000+ different large scale simulations)
• Robust search algorithms
• Improved efficiency and scalability

Contributors:
Robert Meakin (CREATE A/V)
Mark Potsdam (AFDD)
Rohit Jain (AFDD)
Andy Wissink (AFDD)
Stephen Adamec (CREATE A/V)
Todd Tuckey (Air force)
Dave McDaniel (Air force)
Matt Floros (ARL)

Primary Developers:
Jay Sitaraman (2008-)
Beatrice Roget (2010-)

Documentation

Three journal articles and 8 conference papers

• J. Sitaraman, M.Floros, A.Wissink, M.Potsdam, “Parallel Domain

Connectivity Algorithm For Unsteady Flow Computations Using
Overlapping and Adaptive Grids,” Journal of Computational Physics
229(12)(2010) 4703–4723.

• B.Roget and J. Sitaraman, “Wall Distance Search Algorithm Using

Rasterized Marching Spheres,” Journal Computational Physics 241
(2013) 76-94.

• B. Roget and J. Sitaraman, “Robust and Efficient Overset Grid Assembly

For Partitioned Unstructured Meshes,” Journal of Computational
Physics 260 (2014) 1-24

This presentation is a synopsis of all of the above with focus on the last
journal article.

Partition boundary problem

OGA core task = DONOR SEARCH:
find cell(s) containing a point

Line-walk search algo:
Move from cell to cell along a line
using cell connectivity

Complex geometry of partition
boundary

Multiple exit/re-entry possible

Unstructured Mesh-Block Partition

Robustness issue

Load imbalance problem

Fuselage Mesh-Blocks

Blade Mesh-Blocks

HART-II unstructured mesh system :
1 fuselage, 4 blades, 260 mesh-blocks

NO LOAD

LARGE LOAD

Resolution capacity :
Heuristic parameter that
quantifies solution quality
(Cell volume is used now for
donor cells and averaged
cell volume for grid nodes)

Overlapping mesh system:

OGA procedure attempts to
find donor cells for all mesh
points (query points)

Point Types Definition

Donors are selected if
they have better
resolution capacity

Point Types: hole points

Hole points:

Mesh points that are
inside a solid wall

Point Types: receptor points

Receptor Points:

Mesh points that could find
donor cells of better
resolution capacity

flow solution will be
interpolated to these points

Some points are
mandatory receptors:

• Neighbors of hole points

• Neighbors of outer
boundary

Point Types: Field Point

Field points:

Mesh points were flow
variables are being solved

Point where resolution is
best, and which is neither
hole point nor mandatory
receptor.

Automated procedure to
identify point type

 minimal mesh overlap

Staged execution

NSU3D multi-block

unstructured grid

(6 processor

partition shown)

Section along z=0

plane showing

overlap

Section along z=0

plane after performing

domain connectivity

Automated off-body mesh

generation using

resolution of near-body

outer boundary points

(i.e those that were not

satisfied by NB-NB

connectivity)

Off-body mesh

geometry

(z=0 plane cut)

Off-body mesh

geometry with fringes

and holes blanked out

(after NB-OB

connectivity)

Near-body and

off-body grids

(fringes and holes

blanked out)

Overview of Presentation

1. Point Localization methods

• EIM (Exact Inverse Maps): uses Cartesian
 auxiliary grids and inverse maps
• ADT (Alternating Digital Tree): uses binary tree

2. Load re-balance Algorithm

3. Results

• Timing and accuracy comparison between
 EIM and ADT (HART-II)

• Scalability comparison with and without
 load re-balance (HART-II and WPS)

• UH-60 forward flight CFD/CSD coupling

Overview of OGA method

Hole profiling

Mesh-block profiling

Donor search

Point type assignment

Interpolation

Query Point Identification

Create approximate representation of
each solid body

For each mesh-block, list of points (from
other MB) with potential overlap = QP

Pre-process
mesh-block

Identify donor
cells for each QP

ADT:
• Cells organized in
binary tree
• Exhaustive search
on reduced set of
potential donor
cells

EIM:
• Create Auxiliary
grids and exact
inverse maps
• Line-walk search
algo, constrained
to small volume.

Determine type of each query point
(hole, receptor, of field point)

For receptor points, compute
interpolation weights

Hole Profiling

Goal: Create approximate representation of each solid body using a
Cartesian auxiliary grid to facilitate identification of hole points after donor search step:

Hole points are points in approximate hole representation
AND with no donor from hole mesh

(true only if approximate hole representation is close enough to the actual body wall:
does not include any face of the outer mesh boundary).

Cartesian auxiliary grid (AG):
• Bounding box of aircraft
• Equal size cells (sub-blocks)

Example: approximate representation of
aircraft hole:

Advantage of Cartesian AG:
• Compact representation
• Very efficient identification of
containing sub-block

Sub-blocks with
potential wall
face overlap

Hole Profiling : step 1

Find bounding
box of wall faces
(gather info from
all processors)

Partitioned mesh

Local wall
bounding boxes

Hole Bounding
Box

Outer
boundary

Create auxiliary grid,
refine until no hole
sub-block contains
any outer face

Hole (wall)
sub-blocks

Hole sub-block containing outer
cell faces

(at coarser level)

Hole Profiling : step 2

Perform flood-fill
to identify all hole
sub-blocks

Hole (inner)
sub-blocks

Outer layer of
sub-blocks tagged

as OUT
(seeds of flood-fill

algorithm)

Query point in hole SB
AND no donor in hole mesh

 HOLE POINT

Query point in hole SB,
but donor cell exists in hole mesh

 Not a Hole Point

Hole Profiling : step 3

Non-empty sub-blocks of AG1
overlapping AABB of MB2

MB1

Query points for MB1

Query points for MB2
(inside OBB of MB2)

AG1

AG2

MB2

Query Point Identification

For each mesh-block, find query points:
points in region of potential overlap
(for which donor cells need to be searched)
 important to minimize number of QP

Use a combination of :

• oriented bounding box (OBB)
overlap check and
• Cartesian auxiliary grids
superimposed on each Mesh-block
(non-empty sub-blocks tagged)

to obtain set of query points as
small as possible

Query Point Identification

Mesh-block cells

Oriented Bounding Box
of Mesh-Block: OBB 1

Query points

Mesh-block cells
overlapping OBB 2

Oriented Bounding Box
of query points: OBB 2

OBB = outer
bounds of

Auxiliary Grid

Only cells overlapping Query Points need to be pre-processed in next
step (Mesh-Block profiling):

Cell point
inside SB

Cell point
inside SB

Cell point
inside SB

Cell point
inside SB =
SB center

 Cell Vertex inside Sub-Block Cell Edge intersects Sub-Block face

Sub-Block edge intersects
cell face

Sub-block is entirely inside cell

Mesh-Block Profiling (EIM)

Create Cartesian Auxiliary Grid around cells and identify, for each sub-block,
at least a cell point:

• cell centers whenever possible
• any cell point otherwise

This point will serve as the starting
point of the line search during
donor search

Sub-block size determines efficiency of algorithm.
From empirical order analysis, near-optimal rule is:

Exact Inverse Map:
only sub-blocks with no overlap
with mesh-block cells do not store
any point.

Another map is also created to store,
for each sub-block, all boundary faces
contained (based on BB overlap)

Donor Search (EIM)

Problem : identify containing mesh-block cell for each Query Point

Line-walk search algorithm:
Form a line from starting point to query point (inside known cell), walk from cell
to cell along that line until line does not intersect any cell face (donor found) or a
boundary face is crossed (QP possibly out, but must check for re-entry)

Query point
Cell

centers

Cell centers in sub-block of QP

Stored
cell point

No cell centers in sub-block of QP

Both start point and query point are in a single sub-block of the AG
 Entire line-search constrained to sub-block: easier to check for re-entry

Donor Search (EIM)

If the search-line crosses a boundary face, check other boundary faces in the
sub-block for possible re-entry:
New intersection closest to QP: face normal points in same or different
direction as search vector ?

N . L < 0
N . L > 0

Different  a donor cell exists, search can
resume from this cell. Same  no donor exists

• Tolerance for determining face crossing
• Interpolation weight check
• Moving search-line if too close to vertex/edge /face

Robustness
issues:

Boundary faces
Checked for

re-entry

Point Type Assignment

1. IDENTIFY HOLE POINTS

2. IDENTIFY FIELD/RECEPTOR POINTS

Donor cells should not have any
node of “Receptor Point” type

Field Point
Receptor Point
Mandatory Receptor Point

Identify first mandatory receptors

3. RESOLVE POINT TYPE CONFLICTS

Interpolation

Receptor points: interpolation weights computed using
Newton-Raphson procedure.

Supported cell types:

Load imbalance problem

Fuselage Mesh-Blocks

Blade Mesh-Blocks

HART-II unstructured mesh system :
1 fuselage, 4 blades, 260 mesh-blocks

Load imbalance problem

Task
Duration

(s)

Processor ID (256 procs)

Partition 94 (bottleneck)

Blade mesh-blocks

Sectional view

Simple load re-balancing:

 Load per processor estimated: total OGA time
 target load = load average

 Most loaded processor donates to least loaded processor,

until all are within 20% of target load

 Load assumed prop. to number of QP: if P1 needs to transfer
x% of its load, it transfers x% of its Query Points.

Load Re-balance Algorithm

Sub-mesh block
retained on P 94

Sub-mesh blocks transferred to
other processors

Load Re-balance Algorithm

 QP to transfer are chosen by dividing overloaded mesh-block in the

longest direction and using a Cartesian auxiliary grid to efficiently identify
the required number of QP

 Along with QP, overlapping cells information is also transferred. Currently,
ADT method is used to perform load rebalance (less data required)

Adaptive Load Re-balance

 After initial load re-balance, load distribution still inadequate:

• Duration of new communication tasks not accounted for
• Assumption of load prop to nQP inaccurate

 Adaptive load re-balance: use current load measurements to correct

previous load transfer matrices

Pi Pj

Transfers

Load to
Previously donor Previously receptor

Adaptive Load Re-balance

 After initial load re-balance, load distribution still inadequate:

• Duration of new communication and partitioning tasks not accounted
• Assumption of load prop to nQP inaccurate

 Adaptive load re-balance: use current load measurements to correct

previous load transfer matrices, include cost of new operations

Pi Pj

Transfers

Load to

Pd1
Pd2

Pdn Previously
receptor

Previously receptor

Adaptive Load Re-balance

 After initial load re-balance, load distribution still inadequate:

• Duration of new communication tasks not accounted for
• Assumption of load prop to nQP inaccurate

 Adaptive load re-balance: use current load measurements to correct

previous load transfer matrices

Pi Pj

Transfers

Load to

Pr1
Pr2

PrN Previously donor Previously donor

Adaptive Load Re-balance

 After initial load re-balance, load distribution still inadequate:

• Duration of new communication tasks not accounted for
• Assumption of load prop to nQP inaccurate

 Adaptive load re-balance: use current load measurements to correct

previous load transfer matrices

Pi Pj

Transfers

Load to

Pr1
Pr2

PrN

Pd1
Pd2

Pdn Previously
receptor

Previously
donor

HART-II case

256 processors
1 fuselage, 4 blades
7 million nodes

Detail of Blade/Fuselage overlap

HART-II case : OGA results

Before

After:

Same point types identified for
ADT and EIM methods

Mesh with best resolution
selected automatically 
minimal overlap

Timing comparison EIM / ADT

Load re-balance Results

WPS case:

3 unstructured meshes
(1 wing, 2 stores)

15 million cells

Wing-Pylon-Store case (WPS)

Detail of pylon/store overlap

Scalability Results: WPS

Scaling to large number of cores

HART-II with 80 million nodes
and ~ 320 million cells

At 8192 cores overset grid assembly takes more time
than solver time (136%) without load-balancing. With
load-balancing this overhead is reduced to a
manageable (20%).

However, OGA is still not linearly scalable

UH-60A CFD/CSD coupling

256 core simulation

Predicted Aerodynamic loading

Overset grid
assembly time
reduced by an
order of
magnitude
with the same
end result in
prediction

Increased
throughput

Conclusions and Outlook

• Exact Inverse Map method to perform OGA on partitioned
unstructured meshes in parallel:
• method uses Cartesian auxiliary grids to build exact inverse

maps to speed up donor search (line-walk search)
• Method shown to be robust and accurate by comparing

with ADT method, while at the same time more efficient
than ADT (x 2 for HART-II case)

• Designed an adaptive load re-balance algorithm to tackle the
large load imbalance:
• improved efficiency (total time reduced by 76% for HART-II)

and scalability (speed-up increased from 117 to 213 using
256 processor for the WPS case)

• Showed improvement in execution time on up to 8192 cores

Future Work and Acknowledgements

• Explore further improvements in efficiency :

 Extend load re-balance algorithm for improving

scalability further

• High-order and conservative overset grid assembly in parallel

We gratefully acknowledge:
• Support from U.S. Army Research Office (Dr Roger Strawn)
• Contributions from CREATE A/V development team:
 Dave McDaniel, Stephen Adamec, Todd Tuckey
 Robert Meakin, Mark Potsdam, Andrew Wissink

