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Problem Definition 

• CFD simulation of complex problems (moving and 
deforming multiple bodies) require overset meshes 
 

• Overset Grid Assembly method required to identify 
point types (solver, receptor, hole) 
 

• Many existing OGA codes: PEGASUS5, 
SUGGAR++/DiRTlib, CHIMPS, OVERFLOW with varying 
capabilities 
 

• OGA method should be accurate, efficient and scalable, 
and fully automated.  

 

• Two main challenges for partitioned unstructured 
meshes and unstructured dual-mesh systems 
 

 complex geometry of partition boundaries 
        robustness problems for the point-localization 

 

 Inherent load imbalance (large variation in the 
types of mesh-block overlap) 

        poor efficiency and scalability 



PUNDIT  (product of CREATE A/V) 

Development history: 
• Begin development in early 2008 as part of the HPC Institute for Advanced 
Rotorcraft Modeling and Simulation (HIARMS) 
• First production version in Q4 2008 
• Integral part of CREATE A/V Helios (rotary-wing tool)  from 2009 
• Integral part of CREATE A/V Kestrel (fixed-wing tool) from 2010 
 
Capabilities: 
• Based on implicit hole cutting  
• Fully parallel and highly automated (no user input) 
• Support for node-centered/cell-centered interpolation 
• Support for adaptive Cartesian grids 
• In production for last 5 years (1000+ different large scale simulations) 
• Robust search algorithms 
• Improved efficiency and scalability 
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Documentation 

Three journal articles and 8 conference papers 
 
• J. Sitaraman, M.Floros, A.Wissink, M.Potsdam, “Parallel Domain 

Connectivity Algorithm For Unsteady Flow Computations Using 
Overlapping and Adaptive Grids,” Journal of Computational Physics 
229(12)(2010) 4703–4723. 

 
• B.Roget and J. Sitaraman, “Wall Distance Search Algorithm Using 

Rasterized Marching Spheres,” Journal Computational Physics 241 
(2013) 76-94. 

 
• B. Roget and J. Sitaraman, “Robust and Efficient Overset Grid Assembly 

For Partitioned Unstructured Meshes,”  Journal of Computational 
Physics  260 (2014) 1-24 

  
This presentation is a synopsis of all of the above with focus on the last 
journal article. 



Partition boundary problem 

OGA core task = DONOR SEARCH:  
find cell(s) containing a point 
 
Line-walk search algo: 
Move from cell to cell along a line 
using cell connectivity 
 
Complex geometry of partition 
boundary 
 
Multiple exit/re-entry possible 
 

Unstructured Mesh-Block Partition 

Robustness issue 



Load imbalance problem 

Fuselage Mesh-Blocks 

Blade Mesh-Blocks 

HART-II unstructured mesh system :  
1 fuselage, 4 blades, 260 mesh-blocks 

NO LOAD 

LARGE LOAD 



Resolution capacity : 
Heuristic parameter that 
quantifies solution quality 
(Cell volume is used now for 
donor cells and averaged 
cell volume for grid nodes) 

Overlapping  mesh system: 

OGA procedure attempts to 
find donor cells for all mesh 
points (query points) 

Point Types Definition 

Donors are selected if 
they have better 
resolution capacity 



Point Types: hole points 

 

 

Hole points:  

Mesh points that are   
inside a solid wall 

 

 

 



Point Types: receptor points 

 

Receptor Points:  

Mesh points that could  find 
donor cells of better 
resolution capacity 

flow solution will be 
interpolated to these points 

 

Some points are 
mandatory  receptors: 

• Neighbors of hole points  

• Neighbors of outer 
boundary  



Point Types: Field Point 

 

Field points:  

Mesh points were flow 
variables are being solved 

Point where resolution is 
best, and which is neither 
hole point nor mandatory 
receptor. 

 

Automated procedure to 
identify point type  

 minimal mesh overlap 

 



Staged execution 

NSU3D multi-block 

unstructured grid  

(6 processor 

partition shown) 

Section along z=0 

plane showing 

overlap 

Section along z=0 

plane after performing 

domain connectivity 

 

Automated off-body mesh 

generation using 

resolution of near-body 

outer boundary points  

(i.e those that were not 

satisfied by NB-NB 

connectivity) 

Off-body mesh 

geometry       

(z=0 plane cut) 

Off-body mesh 

geometry with fringes 

and holes blanked out 

(after NB-OB 

connectivity) 

Near-body and 

off-body grids  

(fringes and holes 

blanked out) 



Overview of Presentation 

1. Point Localization methods 
 

• EIM (Exact Inverse Maps): uses Cartesian  
  auxiliary grids and inverse maps 
• ADT (Alternating Digital Tree): uses binary tree 

 
2. Load re-balance Algorithm 

 
3. Results 

 

• Timing and accuracy  comparison between  
 EIM and ADT (HART-II) 

•  Scalability comparison with and without  
          load re-balance (HART-II and WPS) 

• UH-60 forward flight CFD/CSD coupling 
 
 



Overview of OGA method 

Hole profiling 

Mesh-block profiling 

Donor search 

Point type assignment 

Interpolation 

Query Point Identification 

Create approximate representation of 
each solid body 

For each mesh-block, list of points (from 
other MB) with potential overlap = QP 

Pre-process 
mesh-block 

Identify donor 
cells for each QP 

ADT: 
• Cells organized in 
binary tree 
• Exhaustive search 
on reduced set of 
potential donor 
cells 

EIM: 
• Create Auxiliary 
grids and exact 
inverse maps 
• Line-walk search 
algo, constrained 
to small volume. 

Determine type of each query point 
(hole, receptor, of field point) 

For receptor points, compute 
interpolation weights 



Hole Profiling 

Goal: Create approximate representation of each solid body using a  
Cartesian auxiliary grid to facilitate identification of hole points after donor search step: 
 

Hole points are points in approximate hole representation  
AND with no donor from hole mesh  
 

(true only if approximate hole representation is close enough to the actual body wall: 
does not include any face of the outer mesh boundary). 

Cartesian auxiliary grid (AG): 
• Bounding box of aircraft 
• Equal size cells (sub-blocks)  

Example: approximate representation of 
aircraft hole: 

Advantage of Cartesian AG: 
• Compact representation 
• Very efficient identification of  
containing sub-block  

Sub-blocks  with 
potential wall 
face overlap 



Hole Profiling : step 1 

Find bounding 
box of wall faces 
(gather info from 
all processors)  

Partitioned mesh 

Local wall 
bounding boxes 

Hole Bounding 
Box 

Outer 
boundary 



Create auxiliary grid, 
refine until no hole 
sub-block contains 
any outer face  

Hole (wall) 
sub-blocks 

Hole sub-block containing outer 
cell faces  

(at coarser level) 

Hole Profiling : step 2 



Perform flood-fill 
to identify all  hole 
sub-blocks                                   

Hole (inner) 
sub-blocks 

Outer layer of 
sub-blocks tagged 

as OUT  
(seeds of flood-fill 

algorithm) 

Query point in hole SB  
AND no donor in hole mesh  

 HOLE POINT 

Query point in hole SB,  
but donor cell exists in hole mesh  

 Not  a Hole Point 

Hole Profiling : step 3 



Non-empty sub-blocks of AG1 
overlapping AABB of MB2 

MB1 

Query points for MB1 

Query points for MB2 
(inside OBB of MB2) 

AG1 

AG2 

MB2 

Query Point Identification 

For each mesh-block, find query points:  
points in region of potential overlap  
(for which donor cells need to be searched) 
 important to minimize number of QP 

Use a combination of : 
 
• oriented bounding box (OBB) 
overlap check and 
• Cartesian auxiliary grids 
superimposed on each Mesh-block 
(non-empty sub-blocks tagged) 
 

to obtain set of query points as 
small as possible 



Query Point Identification 

Mesh-block cells 

Oriented Bounding Box 
of Mesh-Block: OBB 1 

Query points 

Mesh-block cells  
overlapping OBB 2 

Oriented Bounding Box 
of query points: OBB 2 

OBB = outer 
bounds of 

Auxiliary Grid 

Only cells overlapping Query Points need to be pre-processed in next 
step (Mesh-Block profiling):  



Cell point  
inside SB 

Cell point  
inside SB 

Cell point  
inside SB 

Cell point  
inside SB =  
SB center 

 Cell Vertex inside Sub-Block  Cell Edge intersects Sub-Block face 

Sub-Block edge intersects 
cell face 

Sub-block is entirely inside cell 

Mesh-Block Profiling (EIM) 

Create Cartesian Auxiliary Grid around cells and identify, for each sub-block,  
at least a cell point: 

• cell centers whenever possible 
• any cell point otherwise 

This point will serve as the starting 
point of the line search during 
donor search 

Sub-block size determines efficiency of algorithm.  
From empirical order analysis, near-optimal rule is: 

Exact Inverse Map: 
only sub-blocks with no overlap 
with mesh-block cells do not store 
any point. 

Another map is also created to store, 
for each sub-block, all boundary faces 
contained (based on BB overlap) 



Donor Search (EIM) 

Problem : identify containing mesh-block cell for each Query Point 
 

Line-walk search algorithm:  
Form a line from starting point to query point (inside known cell), walk from cell 
to cell along that line until line does not intersect any cell face (donor found) or a 
boundary face is crossed (QP possibly out, but must check for re-entry) 

Query point  
Cell  

centers 

Cell centers in sub-block of QP 

Stored  
cell point 

No cell centers in sub-block of QP 

Both start point and query point are in a single sub-block of the AG 
 Entire line-search constrained to sub-block: easier to check for re-entry 



Donor Search (EIM) 

If the search-line crosses a boundary face, check other boundary faces in the 
sub-block for possible re-entry: 
New intersection closest to QP: face normal points in same or different 
direction as search vector ? 

N . L < 0 
N . L > 0 

Different  a donor cell exists, search can 
resume from this cell.  Same  no donor exists 

•  Tolerance for determining face crossing 
•  Interpolation weight check 
•  Moving search-line if too close to vertex/edge /face 

Robustness  
issues: 

Boundary faces  
Checked for  

re-entry  



Point Type Assignment 

1. IDENTIFY HOLE POINTS 

2. IDENTIFY FIELD/RECEPTOR POINTS 

Donor cells should not have any 
node of “Receptor Point” type 

Field Point 
Receptor Point 
Mandatory Receptor Point 

Identify first mandatory receptors 

3. RESOLVE POINT TYPE CONFLICTS 



Interpolation 

Receptor points: interpolation weights computed using 
Newton-Raphson procedure. 
 

Supported cell types: 



Load imbalance problem 

Fuselage Mesh-Blocks 

Blade Mesh-Blocks 

HART-II unstructured mesh system :  
1 fuselage, 4 blades, 260 mesh-blocks 



Load imbalance problem 

Task 
Duration 

(s) 

Processor ID (256 procs) 

Partition 94 (bottleneck) 

Blade mesh-blocks 

Sectional view 



Simple load re-balancing: 
 
 Load per processor estimated:  total OGA time 
      target load = load average 
  
 Most loaded processor donates  to least loaded processor, 

until all are within 20% of target load 
 

 Load assumed prop. to number of QP: if P1 needs to transfer 
x% of its load, it transfers x% of its Query Points. 

Load Re-balance Algorithm 



Sub-mesh block  
retained on P 94  

Sub-mesh blocks transferred to 
other processors 

Load Re-balance Algorithm 
 
  QP to transfer are chosen by dividing overloaded mesh-block in the 

longest direction and using a Cartesian auxiliary grid to efficiently identify 
the required number of QP 
 

  Along with QP, overlapping cells information is also transferred. Currently, 
ADT method is used to perform load rebalance (less data required) 



Adaptive Load Re-balance 
 
  After initial load re-balance, load distribution still inadequate:  

• Duration of new communication tasks not accounted for 
•  Assumption of load prop to nQP inaccurate 

 
 Adaptive load re-balance:  use current load measurements to correct 

previous load transfer matrices 

Pi Pj 

Transfers 
 

Load to 
Previously donor Previously receptor 



Adaptive Load Re-balance 
 
  After initial load re-balance, load distribution still inadequate:  

• Duration of new communication and partitioning tasks not accounted  
•  Assumption of load prop to nQP inaccurate 

 
 Adaptive load re-balance:  use current load measurements to correct 

previous load transfer matrices, include cost of new operations 

Pi Pj 

Transfers 
 

Load to 

Pd1 
Pd2 

Pdn Previously  
receptor 

Previously receptor 



Adaptive Load Re-balance 
 
  After initial load re-balance, load distribution still inadequate:  

• Duration of new communication tasks not accounted for 
•  Assumption of load prop to nQP inaccurate 

 
 Adaptive load re-balance:  use current load measurements to correct 

previous load transfer matrices 

Pi Pj 

Transfers 
 

Load to 

Pr1 
Pr2 

PrN Previously donor Previously donor 



Adaptive Load Re-balance 
 
  After initial load re-balance, load distribution still inadequate:  

• Duration of new communication tasks not accounted for 
•  Assumption of load prop to nQP inaccurate 

 
 Adaptive load re-balance:  use current load measurements to correct 

previous load transfer matrices 

Pi Pj 

Transfers 
 

Load to 

Pr1 
Pr2 

PrN 

Pd1 
Pd2 

Pdn Previously 
receptor 

Previously  
donor 



HART-II case 

256 processors 
1 fuselage, 4 blades 
7 million nodes 



Detail of Blade/Fuselage overlap 



HART-II case : OGA results 

Before 

After: 
 
Same point types identified for  
ADT and EIM methods 
 
Mesh with best resolution 
selected automatically  
minimal overlap 



Timing comparison EIM / ADT 



Load re-balance Results 



WPS case: 
 

3 unstructured meshes 
(1 wing, 2 stores) 

 
15 million cells 

Wing-Pylon-Store case (WPS) 



Detail of pylon/store overlap 



Scalability Results: WPS 



Scaling to large number of cores 

HART-II with 80 million nodes 
and ~ 320 million cells 

At 8192 cores overset grid assembly takes more time 
than solver time (136%) without load-balancing. With 
load-balancing this overhead is reduced to a 
manageable (20%).  
 
However, OGA is still not linearly scalable 



UH-60A CFD/CSD coupling 

256 core simulation 



Predicted Aerodynamic loading 

Overset grid 
assembly time 
reduced by an 
order of 
magnitude 
with the same 
end result in 
prediction 
 
Increased 
throughput 
 



Conclusions and Outlook 

• Exact Inverse Map method to perform OGA on partitioned 
unstructured meshes in parallel:  
• method uses Cartesian auxiliary grids to build exact inverse 

maps to speed up donor search (line-walk search) 
• Method shown to be robust and accurate by comparing  

with ADT method,  while at the same time more efficient 
than ADT (x 2 for HART-II case) 

 

• Designed an adaptive load re-balance algorithm to tackle the 
large load imbalance:  
• improved efficiency (total time reduced by 76% for HART-II) 

and scalability (speed-up increased from 117 to 213 using 
256 processor for the WPS  case) 

• Showed improvement in execution time on up to 8192 cores 



Future Work and Acknowledgements 

• Explore further improvements in efficiency : 
 
 Extend load re-balance algorithm for improving 

scalability further 
 

• High-order and conservative overset grid assembly in parallel 
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