ASSESSMENT OF GRID CONNECTIVITY QUALITY AND ENHANCEMENTS ON AUTOMATIC ESTIMATES ON HOLE BOUNDARY PLACEMENT

William M. Chan

Shishir Pandya

NASA Ames Research Center

$12^{\text {th }}$ Symposium on Overset Composite Grids and Solution Technology, Atlanta, Georgia, October 6-9, 2014

OVERVIEW

- Overset grid connectivity quality
- Review of quality measures that point to sources of orphan points and degradation of solution accuracy
- Visualization tools in latest OVERGRID
- Hole boundary offset from minimum hole
- Automatic variable distance estimate (work in progress)
- Summary and conclusions

GRID CONNECTIVITY QUALITY

Fringe points: grid points at outer boundaries and hole boundaries that require interpolation data from another grid
$N_{F}=$ Number of layers of fringe points requested

Fringe point	Donor stencil	Treatment	Quality
Orphan	None	Averaged from neighbors	Poor
Mixed	$<N_{F}$ layers	Fringe points with no donor stencils converted to field points (reduced accuracy) Fringe points with donor stencils get trilinear interpolation	Accepted in most standard practices if number of converted points is a small fraction of total
Regular	\mathbf{N}_{F} layers	All fringe points receive trilinear interpolation	Okay - Excellent (varies depending on fringe point / donor stencil compatibility)

FRINGE POINTS AND DONOR STENCILS SCENARIOS

OVERGRID (2.3t) DIAGNOSTICS MODULE

Iblank Analysis		Orphan Analysis		
Compute All Compute Selected		Total	Display 1	00000
Points Total No. \% of Total		- None All	- Selected	Table
Blanked		Color - Black/White O Grid \#		
Fringe Total		Hole Boundaries Display		
		- None 0	All \bigcirc Select	
Interpolation Stencil Analysis		Converted Fringe Points		
Read	- Show	Total	0 Nfringe	2
Fringe Pt. / Interp. Stencil Compatibility		- All - Sele		
$0.0<=$ Vol. ratio <= 0.01 Show		Color - Grey O Grid \#		
Color - Grey © Grid \# Table		Cut Plane		
Negative Jacobians		- 0 - x y	y \bigcirc z Coord	0.0
Compute	- Г Show	Show cut cells	- cut edges	Comp

- Neighboring grid planes of selected orphan point
- 3-D hole boundaries
- Cut plane over curvilinear and Cartesian cells
- Converted fringe points
- Donor stencil compatibility

ORPHAN POINTS ANALYSIS

Orphan Points Display

Previous procedure: Manually select grid planes to display

Current procedure: Mouse pick orphan point

Neighboring Grid Slices Display $=$ Wiaget with J,Kine Plane Toggles ${ }^{-x}$

Neighboring Slices Display

Auto display of grid planes from neighboring grids that may cover point

3-D HOLE BOUNDARIES

Hole Boundaries Display

- None

 Green grid
hole boundary Green grid
hole boundary

CONSTANT CARTESIAN CUTPLANE

Display options:

- Edges formed by intersection of Cartesian plane and hex cells
- Complete cells cut by Cartesian plane

Cut Plane				
- 0	- x	- y	- z Coord	0.0
Show cut cells			- cut edges	Comp

CONVERTED FRINGE POINTS

Display of level 2 or higher fringe points that have been converted to field points due to insufficient overlap - reduction in solution solver differencing stencil

Converted Fringe Points			
Total	$\mathbf{0}$	Nfringe	$\mathbf{2}$
- None	All	\circ	Selected
Coloble			
Color	\bullet Grey	\circ Grid \#	

Fringe Repair Points Count Grid \# Count

4	81	
5	65	
6	13	
7	49	
8	223	
9	98	
10	193	
12	241	
13	48	
14	48	
15	65	
16	160	
18	2	
22	1119	
23	1063	
Total	3468	

DONOR STENCIL COMPATIBILITY

$\mathrm{Vr}=$ ratio of cell volume of fringe point and cell volume of donor stencil Range: $0<\mathrm{Vr}<=1.0 \quad$ (smaller volume / larger volume)
Display fringe points with Vr inside specified range

| Fringe Pt. / Interp. Stencil Compatibility |
| :--- | :--- | :--- |
| 0.0 $<=$ Vol. ratio $<=$ 0.01 Γ Show
 Color \bullet Grey \circ Grid \# Table |

HOLE-CUTTING METHODS
 BEYOND MINIMUM HOLE

Minimum hole

- Blank all points that are inside solid bodies

Offset from Minimum Hole

- Perturb hole boundary points away from solid surface
- Many acceptable solutions

Hole cut	Implicit	Explicit
Description	Find donor stencils for ALL points in volume grid. Use cell attribute criteria to settle on final hole boundary location	User specifies minimum hole cut and offset distance
User time	Low	High
CPU time	High	Low

REVIEW OF CHIMERA COMPONENTS CONNECTIVITY PROGRAM (C3P) TECHNOLOGY

Input: flow solver boundary conditions, component ID on solid walls

Automatic

- determination of grid points to be cut by each X-ray
- generation of adaptive X-rays to cut minimum hole
- initial hole boundary offset estimates using wall distance rules
- orphan points removal iterations by adjusting hole boundaries

Publication

Chan, W. M., Pandya, S. A., Rogers, S. E., Efficient Creation of Overset Grid Hole Boundaries and Effects of Their Locations on Aerodynamic Loads, AIAA Paper 2013-3074, AIAA 21st Computational Fluid Dynamics Conference, San Diego, CA, June, 2013

Deficiencies

- Hole boundary offset estimate based on assumption of constant outer boundary extent of near-body grids and iblanks are ignored

HOLE-CUTTING PROCEDURE IN C3P

(3) After 1 orphan removal iteration
(4) After 3 orphan removal iterations
 using wall-distance heuristic rules

OBJECTIVES OF CURRENT WORK

1. Given minimum hole boundary, automatically determine spatially variable offset that results in as few orphan points as possible so that orphan removal iterations can be omitted
2. CPU time for auto offset needs to be no more expensive than orphan removal iterations

FAST LOOK-UPS USING CARTESIAN MAPS

For each geometric component, use Cartesian map to determine

- distance to component wall
- local outer boundary extent of component near-body grids after (1) minimum hole cut, (2) near-body hole cut estimate

Distance to main-wing wall

Local outer boundary extent of main-wing near-body grids after near-body hole cut

Volume grid outer boundary of main-wing
(Near-Body Grids Blanking)

Starting point: minimum hole $D_{w}=$ distance to wall of another component
$D_{n}=$ distance to wall of own component
$\mathrm{N}_{\mathrm{F}}=$ no. of layers of requested fringe points
Mid-distance rule:

- For each ray from surface, find first index $L_{\text {mid }}$ in normal direction L where $D_{w}<D_{n}$
- Blank all points $L>L_{\text {mid }}+N_{F}$

Starting point: minimum hole
$\mathrm{D}_{\mathrm{w}}=$ distance to closest wall
$D_{o b}=$ local outer boundary extent of closest-wall component after near-body grids blanking (Cartesian map look-up)

Closest wall component

Outer boundary distance rule: Blank point if
$\mathrm{D}_{\mathrm{w}}<\varepsilon \mathrm{D}_{\mathrm{ob}}$ where $\varepsilon \sim 0.5$

HOLE BOUNDARY ESTIMATE PROCEDURE (3)

(Treatment Near Collar Grids)

Analogy:
Fuselage surface : Off-body volume Collar surface on fuselage: Near-body volume

Outer boundary extent Cartesian maps for slat, wing, and flap need to combine effects of collar grid

- surface outer boundary
- volume outer boundary

HOLE BOUNDARY ESTIMATE TEST CASE

69° Delta-wing / Body / Sting (AIAA Sonic Boom Workshop) 32.6 million points, 17 grids

Previous: 1674 orphans

New: 1042 orphans

HOLE BOUNDARY ESTIMATE TEST CASE

Subsonic Wing/Body: Common Research Model (CRM)
17.8 million points, 14 grids

- Orphan point

Previous: 513 orphans
New: 34 orphans

HOLE BOUNDARY ESTIMATE TEST CASE
 Tank and Booster

28.5 million points, 6 grids

- Orphan point

Previous: 112500 orphans

New: 2 orphans

HOLE BOUNDARY ESTIMATE TEST CASE

Fuselage with Slat, Wing, and Flap High Lift System (Trapwing) 50.6 million points, 24 grids

- Orphan point

Previous: 85000 orphans
New: 32 orphans

HOLE BOUNDARY ESTIMATE TEST CASE

Ames Research Center
D8 Double Bubble Aircraft with Blended Nacelle in Wind Tunnel 156.5 million points, 66 grids

Previous: 61200 orphans

New: 336 orphans

TEST CASES AND RESULTS

CPU time to perform minimum hole cut, hole boundary estimate, donor stencil search, and I/O
Linux workstation, 8 OpenMP threads

Test Case	\# Grid pts $\left(\times 10^{6}\right)$	Previous		New	
		\# orphans	CPU time	\# orphans	CPU time
Delta Wing	32.6	1674	30s	1042	26s
CRM	17.8	513	25s	34	24s
Core/SRB	28.5	112500	$46 s$	2	36s
Trapwing	50.6	85000	$94 s$	32	73s
D8 blend nac.	156.5	61200	$651 s$	336	600 s
\uparrow					
Still need to perform orphan					
removal iterations					

New time $\sim 77 \%$ - 96% of previous time

SUMMARY AND CONCLUSIONS

Overset grid connectivity quality visualization in OVERGRID (2.3t)

- Various displays related to grid connectivity
- Facilitate rapid Iocation of
- sources of orphan points
- local degradation of solution accuracy due to reduction in differencing stencils
- local degradation of solution gradient continuity due to large discrepancies in inter-grid cell sizes

Improved spatially variable hole boundary offset from minimum hole

- Successful use of distance rules requires local estimates enabled by Cartesian maps
- Distance to wall
- Outer boundary extent of near-body grids with iblanks accounting
- Rules for near-body grids, off-body grids, collar grids
- Compared to previous procedure
- Significant reduction in number of orphan points (most cases)
- Reduction in CPU time

