MOSS:

Multiple Orthogonal Strand System

Bob Haimes

haimes@mit.edu
Aerospace Computational Design Labratory
Department of Aeronautics \& Astronautics
Massachusetts Institute of Technology
$12^{\text {th }}$ Symposium on
Overset Composite Grids and Solution Technology Georgia Institute of Technology

Overview

- Introduction
- Design Goals
- Implementation
- Geometry Import \& Tessellation
- Classification of Vertices
- Merging of Normals
- Fanned Fills
- Radial Fills
- Sharp Tailing-Edge Treatment
- Laplacian Smoothing
- Strand Direction Optimization
- Setting Cutoff Indices
- Discussion \& Status

Introduction

DoD HPCMP CREATE ${ }^{\text {TM }}$-AV Mission

- Analyze aircraft designs before new concepts are purchased
- Find flaws before manufacturing and expensive work-arounds
- Use of high fidelity simulations - HPC
- Reynolds-Averaged Navier-Stokes (RANS):

HPCMP CREATE ${ }^{\text {TM }}$-AV Kestral \& Helios

- Requires the use of anisotropic meshes
- Traditional RANS Meshing
- Use of Structured blocks (abutting or OverSet)
- Anisotropy naturally handled by adjusting the spacing close to the walls to resolve boundary layers
- Intensive interaction and a meshing expert is required
- Too much of a burden for acquisition engineers

Need an automatic RANS meshing scheme!

Introduction

Some Automatic RANS Meshing Schemes

- Kallinderis (1993)
- Inflate the body's surface triangulation a number of times with the desired spacing
- Builds prismatic layers
- Fill the voids with an isotropic tetrahedral mesher
- Delanaye et al (1999)
- Off-body mesh is AMR and over-set
- Meakin et al (2007)
- Introduction of Strands
- Prismatic layers are inferred by line segments
- Off-body mesh is AMR and over-set

Introduction

Strands

- Minimal memory footprint
- Vector for direction
- Integer for clipping index

Introduction

Original Single-Strand Implementation (2007)

- Input: a mainfold surface tessellation
- Direction vector computed from triangle normals
- A single strand constructed from each surface vertex
- Laplacian smoothing applied to get consistent spatial coverage and reduce collisions in corner regions

Trailing Edge

Corner Smoothing

Introduction

Issues with the Current Strand Implementation

- Spatial coverage
- Orthogonality
- Premature cutoff

Design Goals

Take the good, fix the bad...

- Automatic
- Small memory footprint
- Improve spatial coverage
- Maintain orthogonality (as much as possible)
- Maximize cutoff index

Simple Idea

- Allow multiple strands to emanate from certain positions
- Lifted Surface
- Surface topology is not the same as above
- Base of a prismatic stack is degenerate at these positions

Implementation

MOSS Inputs

- A Solid Model
- The strand length (in the model's units)
- The number of strand positions and their relative spacings
- The number of smoothing iterations

Geometry Import \& Tessellation

- Reads and parses the BRep - Faces, Edges, Nodes
can use various geometry kernels (CAPRI, EGADS, Capstone)
- Geometry kernel provides a watertight tessellation (can be a mix of quadrilaterals and triangles)
- Provide Face normals for each vertex in the tessellation Edges vertices will have 2 Face normals, Nodes have 2 or more

Implementation

Classification of Edges/Nodes Vertices

- Convex Edge Vertex - Winding Angle $>180^{\circ}$
- Concave Edge Vertex - Winding Angle $<180^{\circ}$
- Convex Node - each Face pair has a Winding Angle $>180^{\circ}$
- Concave Node - any Face pair has a Winding Angle $<180^{\circ}$
- Opposite-Normals - sharp Trailing-Edge/Fuselage intersections
- Same Normal - difference between normals for a Face pair $<3^{o}$

Winding Angle - Plane is generated by \bigotimes of Face Normals

Implementation

Merging of normals for a Concave Edge/Node strand

- Sum normals and renormalize
- Any pairs marked as Same Normal only summed once

Implementation

Fanned fills for Convex Edge strands

- Compute Fanning numbers for each Convex Edge vertex
- Quad/triangle spacing orthogonal to Edge segment used with Winding Angle to figure subdivisons
- Traverse each Edge and remove abrupt changes
- Add triangles for the segment in strips
- Degenerate base element is a wedge

Implementation

Radial fills for Convex Node strands

- Creation of center strand
- Close up the exposed Edge segments by triangles that connect to the center
- Insert a strand where the spacing is too large by splitting an interior tri side
- Use a MINMAX angle criteria to drive swapping of interior triangles
- Iterate on the 2 items above
- Degenerate base element is a tetrahedron

Implementation

Opposite-Normals Node - sharp Trailing-Edge/Fuselage

- Reopen Edge segments touching ONN
- Create a frozen strand aligned with the Trailing-Edge
- Create a frozen center strand
- Close up the exposed Edge segments by creating tris that have 2 positions on the exposed Edge openings \& connect to the center strand

Implementation

Smoothing (strand pivoting)

Adjust the direction for those strands that locally collide

- Mark all strand stacks that are problematic at the lifted surface
- Flood the lifted surface neighbors up to a specified depth
- Update the touched strands by performing the Laplacian smoother (averaging neighboring strand directions and renormalizing) unless the strand is marked as frozen.
- Iterate until no movement

This is iteratively done in 2 phases:

- Edge/Node phase. This only adjusts strands emanating from either Edge or Node vertices.
- Interior phase. Only smoothes strands that can be found interior to Faces.

Implementation

Smoothing (strand pivoting)

Smoothed lifted surface and examination of smoothed fans

Implementation

Smoothing (strand pivoting)

Smoothed lifted surface for Trailing-Edge/Fuselage junction and fans

Implementation

Smoothing (strand pivoting)

ONN treatment (on wing \& flap) before and after smoothing

Implementation

Strand Pivoting (Smoothing)

- Seductively simple
- At times requires user intervention
- Has no constraints or bounds
- Usually cannot straighten out a situation that is tangled at the base
- Can just go wrong!

Implementation

Strand Pivoting as an Optimization Problem

- Minimize the lifted surface area in problematic regions Will drive individual areas to zero - use longer strand length
- Solved with conjugate gradients (Polak-Ribiere method) Line searches with modified golden section procedure
- Gradients computed via reverse differentiation of code assisted by TAPENADE (Inria)
- Can straighten out a situation that is tangled at the base

Implementation

Strand Pivoting as an Optimization Problem

- Optimization requires that you get everything correct!
- Gradient-based optimization needs a smooth (and hopefully monotonic) objective function:
$\operatorname{erfc}\left(\pi * M I N\left(\right.\right.$ facet $_{\text {norm }} \bullet$ strand $\left._{\text {norm }}\right) /$ smooth $\left._{\text {factor }}\right) *$ facet $_{\text {area }}$
- Separate regions mapped by problematic elements and strand length - can be handled independently
- Smaller problems ($n=2 * n S t r a n d s-2$ angle dofs)
- Threaded/parallel implementation

Implementation

Setting Cutoff Indices

For each Strand the cutoff is set as the smallest index that provides a suite of valid elements (touching the strand)

- Loop from the top (the lifted surface) down
- Is the dot product of the normal (at the facet at this level) positive against all strand directions?
- If so, set the index and stop

It should be noted that this only takes care of local collisions:

- Parts of a concave body come close together
- Interference from other bodies are not covered This is not done as part of MOSS but is performed by PICASSO.

Discussion \& Status

Fast \& Automatic

- Building the lifted surface is straight forward construction
- Most CPU time is consumed in the smoothing \& optimization phases

Solver Requirements

- Must be able to deal with the elements types
- Should construct elements on the fly
- Needs to be fairly immune to abrupt changes in element sizes
- Could take advantage of the strands as lines for solving
- The use of traditional finite volume solvers can be a problem! This is an unusual situation where the meshing scheme is driving choices in solver technologies and development.

Discussion \& Status

Adaptation of the lifted surface

- Not currently implemented
- Provide element barycentric coordinates for insertion
- Care must be taken if removal of strands effects the surface
- Insertion on Concave Edges requires locally rebuilding Fans

Optimization/Smoothing

- Use NLOPT - Low-storage BFGS
- Completely remove Laplacian smoothing (?)

Acknowledgements

Work funded through NASA Grant \#NNX13AK16G Michael J. Aftosmis, technical monitor

Bob Meakin (HPCMP CREATE ${ }^{\text {TM }}-\mathrm{AV}$) provided the inspiration and support.

William Chan (Nasa Ames) and Andrew Wissink (Army Rotorcraft) provided guidance.

Romain Aubry (HPCMP CREATE ${ }^{\text {TM }}-\mathrm{MG}$) assisted in improving the presentation of this work.

