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Motivation

○ Despite nearly a century of investigation roughness effects 
on flow properties are not well understood 

○ Limited methods for a priori estimates 

○ Scalability of roughness effects with Reynolds number non-trivial

○ Lack of tools to predict roughness effects 

○ Primary effects on boundary layer flow 
○ Premature laminar-turbulent transition 

○ Thickening of fully turbulent boundary layer

○ Increase turbulent skin friction 
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Motivation

o Examples of leading edge roughness and erosion found in field 
on utility scale wind turbines
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Roughness Characterization

○ Roughness typically classified broadly into three different 
subsets 

○ Two-dimensional roughness 

○ Isolated three-dimensional roughness 

○ Distributed roughness
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Roughness Effects 

○ Disturbance(s) introduced by distributed roughness 
depends on a number of parameters

○ Roughness height (k) and local flow velocity (Uk)

𝑅𝑒𝑘=
𝜌𝑈𝑘𝑘

𝜇
𝑘+ =

𝜏𝑤

𝜌𝑤

𝑘

ν

○ Ratio of roughness height to boundary layer thickness (𝑘/𝛿) 

○ Local streamwise pressure gradient 

○ Roughness element distribution density or solidity 
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Roughness Effects 

○ Critical behavior

○ Roughness large enough to immediately trigger transition

○ Experiments attempt to identify 𝑅𝑒𝑘,𝑐𝑟𝑖𝑡

○ Basic correlations more accurate in critical region 

○ Subcritical behavior 

○ Roughness shifts transition location, difficult to predict

○ Incubation distance (Morkovin 1980’s) 

○ Transient growth of disturbances  (Reshotko, Tumin et al. 2000’s) 

○ Integrated effects and time histories need consideration 
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Modeling Roughness

○ Typically assumed roughness induces shift in log-layer of 
turbulent boundary layer

○ Can represent this effect with change in boundary condition of 
turbulence model (Wilcox, SA modification, etc.)

Increasing 
Roughness 
Height

Shift due to 

roughness
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Langtry-Menter 

o Conventional RANS turbulence models do not account 
for effects of transition

o Modification to turbulence model does not account for 
transition effects

o Recently developed “local correlation transition model” 

o Transition model introduces two additional global  
parameters 

o Reθt - Critical momentum thickness Reynolds number –
transition onset criteria 

o γ - Intermittency - scalar quantity that ramps up turbulence 
model  
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Local Correlation Principles

o Momentum thickness Reynolds 
number, Reθ = θUe/ν, correlates 
with transition location 

o Relationship between strain rate 
magnitude and momentum 
thickness used to localize 
calculation (Menter 2002)

o Flow begins transition where 
local  Reθ >  Reθt

Critical momentum thickness (Reθt ) vs. 
freestream turbulence intensity
Red line indicates Langtry-Menter correlation 
(Langtry 2006)
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Roughness Amplification Model

Correlate integrated roughness effects with change in 

transition onset criteria 

o Initially proposed by Dassler, Kozulovic, and Fiala from TU 

Braunschweig (2010)   

o Introduces third term (Ar ) to Langtry-Menter transition model 

that defines a region of “roughness influence” 

o Correlation for Reθt modified globally by Ar variable to represent 

new mode of transition  
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Roughness Amplification Model

z z

u/U0

k

a.) BL profile (low τw ) b.) BL profile (high τw)

u/U0

k
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o In principle, roughness will alter momentum thickness correlation

o Momentum flux encountered by roughness can be considered a 

function of the shear stress at the wall (τw) and roughness height (k) 



Ar Distribution Over a Flat Plate

Roughness Applied x/c = .05 - 1.0

with:

(Top) Distribution of Ar variable above flat plate, Ma = 0.3 , Re = 1.34x106

(Bottom) Corresponding skin friction plot

Additionally:
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Roughness Amplification Model

Goals:

o Represent subcritical as well as critical transition behavior

o Formulate model as function of k+

o Account for integrated roughness effects using localized method 

Limitations:

o Bounded by turbulence & transition models

o High Reynolds number limitations

o Cannot account for detailed flow structures produced by 

individual roughness elements 

o e.g. horseshoe vortex formation 
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SST/Langtry-Menter/Roughness-

Amplification Interaction
General Form of Scalar Transport Equation:

Ar - Roughness Amplification Transport Equation
Boundary condition a function of dimensionless 
roughness height (k+)

Reθt - Transport Equation
Production term influenced by Ar variable

γ - Transport Equation 
Production term is influenced by Reθt 

k - Transport Equation 
Production term directly multiplied by γ

Unsteady 
Term

Convective 
Flux Diffusive Flux

Production
(Sources/

Sinks)
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Implementation in OVERFLOW-2

o Model currently implemented in version 2.2f

o Added as a new turbulence model (NQT) option 

o Extends Langtry-Menter routines with addition of new 

𝐴𝑟 variable 

o Convective and diffusive fluxes discretized using 2nd

order HLLC upwind scheme 

o 𝐴𝑟 variable coupled with transition model variables in 

linear SSOR solver 
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Flow and Energy 

Quantities

One Equation 

Closure Models

-Baldwin-Barth

-Spalart-Allmaras

Call to compute Reynolds 

Stress (Closure Type 

Specified by user)

Two equation 

Closure Models

-k-omega, k-epsilon

-Menter's SST Model

Zero Order or 

Algebraic Models

OVERFLOW-2 

Turbulence

Models

Two Equation 

Turbulence Model 

w/ Transition 

Model 

Two equation SST 

paired with two 

equation Langtry-

Menter Transition 

Model.  Four total 

turbulent equations

Two Equation 

Turbulence Model 

w/ Transition 

Model 

and Roughness 

Model

Langtry-Menter 

paired with 

"Roughness 

Amplification" 

model.  Increases 

system to five 

equations  

Compute Eddy Viscosity Based on 

Turbulence Model Output
Plug into RANS 

equations 

Roughness 

Modification

MUTUR1

MUTUR0

MUTUR2

MUTUR4

MUTUR5
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Preliminary Considerations

o Roughness model still relies on Langtry-Menter to 
predict other transition mechanisms (natural, 
separation induced, crossflow instability, etc.)

o Validate behavior of transition model on clean 
configurations

o Transition model strongly dependent on freestream
turbulence intensity (user prescribed parameter) 

o Turbulence decay rate exhibits grid dependence

17



Freestream Turbulence Sensitivity

Zero pressure gradient flat 
plate, α = 0°

o Transition model sensitive to freestream turbulence conditions 

All curves collapse to 
same solution 
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Freestream Turbulence Sensitivity

o Incorrect “laminar” solution predicted due to poorly resolved 
freestream decay rates along inflow

o Two different solutions explored 

o Modification to 𝜔 destruction term in SST turbulence model

o Shut off turbulent production in specified regions 

Inflow Section Flat Plate Section Outflow Section

A B C D

Inviscid Wall Viscous Wall Inviscid Wall
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Freestream Turbulence Decay Limiter

o Modifies destruction term for ω in the SST model

o Impact of modification 
o ω near viscous wall                    ~O(1)

o ω near inviscid wall                  ~O(10-5-10-6)

o Freestream decay rate (   ~  ) ~O(10-5-10-6)

o Modification to turbulence dissipation transport equation
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Flat Plate Results with Decay Limiter 

o Decay limiter functions as desired and produces more accurate results

Zero pressure gradient flat 
plate, α = 0°
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Specifying Turbulent Production

o Separate inflow and viscous wall regions, shut off turbulent 
production terms (ITTYP=102) in inflow section

o Shutting off viscous terms (VISC = .F.) still results in decay of FSTI

No production/ 
destruction in  
inflow region
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Flat Plate with Decay Limiting Methods 

o Production specification produced the best results of remedies 
tested

Zero pressure gradient flat 
plate, α = 0°
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Results with Decay Limiting Methods -

NACA 633- 418 

o While necessary for flat plate, discrepancies arise when limiter is 
applied to low FSTI airfoil cases 

Re = 1.6×106 Re = 3.2×106
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Limiter On



Decay Limiting Conclusions 

o Inconsistencies observed regarding when turbulence decay 
limiter should be applied

o Model development yields insight

o Flat plate and other high freestream turbulence cases calibrated without 
large inflow region (no FSTI decay accounted for in model) 

o Low turbulence intensity airfoil cases calibrated with large inflow regions 
(FSTI decay effectively included in model formulation ) 

o Subsequent tests run accordingly 

o Flat plate cases use turbulence decay limiter

o Airfoil tests run without decay limiting 
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Initial Roughness Model Calibration

o Flat plate 

o Experimental results of Feindt (1956)

o Varying sand grain roughness heights
o (40, 80, 120, 160, 200, 240, 280 k/c)

o Zero and adverse pressure gradient tested

o Transition location vs. roughness Reynolds number (Rek) 
and effects of roughness height on skin friction
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Effect of Roughness Height on

Skin Friction

Zero pressure gradient at 0°
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Effect of Roughness Height on 

Transition
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Zero pressure gradient at 0°



Effect of Roughness Height on

Skin Friction

Adverse pressure gradient at 0°
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Effect of Roughness Height on 

Transition
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Adverse pressure gradient at 0°



Initial Roughness Model Calibration

o Model predicts shift in transition location well

o Change in skin friction also represented 

o NACA 0012 airfoil 

o Determine post critical (Rek > Rek,crit ) model behavior

o Comparison with boundary layer profiles

o Slight discrepancy in the rate of turbulent boundary layer 
development  
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NACA 0012 - BL Profiles - With Roughness

o Very good agreement at earlier chord locations x/c = .05 - .15

o Boundary layer develops too rapidly, deviations in profile in x/c = 
.30 - .40
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1/2“ rough strip applied at x/c = .0064 - .0258
Re = 1.25×106,  α = 0°

Kerho & Bragg, 1997



NACA 0012 - BL Profiles - With Roughness

o Slight lag in boundary development seen at x/c = .05
o Profiles quickly begin to match up well  
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1/2“ rough strip applied at x/c = .0018 - .0191
Re = 1.25×106,  α = 0°

Kerho & Bragg, 1997



Comparison of Boundary Layer States

34

Re = 1.25×106,  α = 0°

Kerho & Bragg, 1997



Texas A&M Experiment 

o Concurrent to development of computational roughness 
model, tests conducted on NACA 633 – 418 

o Roughness height, distribution density, shape, and 
chordwise extent varied 

o Configurations designed to facilitate calibration of the 
model 

o Flow information from RANS simulations used to help with 
roughness sizing and placement  

o Wide range of Reynolds numbers (0.8 - 4.8 × 106) and 
angles of attack (-12 < α < 20°) tested for each roughness 
pattern 
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Texas A&M Experiment 

o Oran W. Nicks Low Speed Wind Tunnel 

o Roughness heights:
o 123, 172, 246 ×10-6 k/c  (100, 140, 200 𝜇𝑚)

o Distribution densities: 
o 3, 6, 9, 12, 15%
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NACA 633- 418 Transition Location 

with Roughness

o Prediction of transition location with roughness model
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𝑅𝑒𝑐 = 1.6 × 106 𝑅𝑒𝑐 = 2.4 × 106



NACA 633- 418 Drag Polar with 

Roughness
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𝑅𝑒𝑐 = 1.6 × 106 𝑅𝑒𝑐 = 2.4 × 106



Early Model Findings

o Errors in drag prediction traced back to over production of 
turbulent kinetic energy (TKE) on lower surface 

o Strong pressure gradient effects not well captured

High

Low

Contours of TKE, NACA 633 – 418, Rey = 2.4 × 106, Axis expanded 15x in 
wall normal direction for clarity 
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Planned Model Development  

o Langtry-Menter pressure gradient correction dominated by 
roughness model function

o Reformulate roughness model to depend on pressure gradient 
parameter (𝜆𝜃) and non-dimensional velocity magnitude ( 𝑈)

o Previously solely a function of 𝐴𝑟, the change to the transition 
criteria is now assumed to be:

Δ𝑅𝑒𝜃𝑡 = 𝑓 𝐴𝑟 , 𝜆𝜃 ,  𝑈

Information about 
roughness height / 
velocities at roughness

Local pressure 
gradient parameter

Reduce influence of 
modification near wall
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Ongoing and Future Work 

o Continue calibration of model with data set produced in 
Texas A&M experiments 

o Refine new formulation with pressure gradient effects and 
continue validation

o Add density parameter to boundary condition input and Ar

function

o New experimental investigations planned on different 
airfoils

o Explore modifications to Langtry-Menter to improve high 
Reynolds number predictions
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Conclusions

o Generalized nature of transport equation
o Three dimensional 
o Overset extensible

o Localized formulation very desirable for parallelization

o Still bound by underlying limitations of Langtry-Menter
transition model 

o Modification of transition onset criteria more 
manageable than physically representing all scales
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