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Outline of Presentation 

•   Problem Statement 
§  Motivation: Brownout Phenomena 
§  Simplification: Helicopter Landing 
§  Problem: Rotor Wake in Hover Interacting with Ground Plane 
§  Technical Challenges 

 

•   Objective 

•   CFD Methodology 

•   Results 

•   Conclusions 
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Motivation – Brownout Phenomena 

 

•  Possible solutions 

§  Poor visibility leads to loss of 
situational awareness  
o  Increased rate of accidents 

§  Increased blade erosion   
o  More frequent blade replacement 

•  Helicopters operating in ground effect uplift and entrain loose 
particles to form large dust clouds 

 

 

§  Change in design  
o  Empirical evidence suggests brownout cloud is a function of rotorcraft design 
o  Requires detailed understanding and modeling of physical phenomena 

responsible for brownout clouds that impact visibility and erosion 

§  Use of sensors 
o  Only deals with increasing situational awareness 

 

§  Change in flight path  

o  May lead to other undesired effects (e.g. higher than desired landing forces) 

Video courtesy OADS  
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Simplification:  Brownout Phenomenon 

•  Brownout phenomena very complicated, want to simplify 

§  In general, a two phase flow problem   
o  Carrier phase: fluid flow induced by helicopter operating in ground effect 
o  Sediment phase: dust particles transported by fluid flow 

§  If assume that the particles are dilute, decouples the phases 
o  Can investigate flow from helicopter landing, ignoring particles 
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Rotor Wake in Hover Interacting with Ground Plane 

Show movie of a free-wake of helicopter 
approaching the ground from Barath 

Want to understand and simulate: a rotor wake in hover 
interacting with a ground plane, with ramifications for brownout 

•  Helicopter landing still complicated 
 §  Approach to landing 
o  Dominated by end of the landing approach à consider only hover 

§  Complicated ground terrain 
o  Details of terrain secondary à consider flat ground plane 

§  Helicopter 
o  Fuselage and tail rotor affects secondary à consider only isolated rotor 
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CFD Modeling Challenges 

•  Rotor Wake in Hover Interacting with Ground Plane 

§  Tip vortex formation and initial convection 
o  Effect of tip geometry / tip blowing à mesh resolution, turbulence 

§  Vortex convection and interaction with ground 
§  Diffusion, stretching, aperiodicity à numerical diffusion, turbulence 
§  Perturbations to steady outwash, separation à turbulence, pressure 

§  Global physics due to ground effect 
o  Modifications to thrust, power, inflow, ground-jet outwashà conservation 
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  First principle based approach (RANS/DNS) 
 

Inviscid wall  
 Rotor not 
modeled  

Vortices not 
resolved well 

FVM for wake 
convection 

 Previous work to capture rotor wake in hover IGE 

Need for RANS – based CFD that resolves vortices 
near ground without empiricism  

Figure courtesy: Kutz et. al  Figure courtesy: Thomas et. al 

–  Morales and Squires (2011) – Euler(DNS)-Lagrangian 

–  Kutz at al. (2012) – RANS  

–  Thomas et al. (2011 and 2012) – Hybrid FVM-RANS 

–  Hariharan et al.(2011) – RANS  
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Objectives 
•  Simplify problem to look at rotor in-ground-effect (IGE) in hover  
 

•  Simulate tip vortex formation 
 

•  Maintaining tip vortex until it reaches ground 

•  Provide detailed understanding of flow physics near ground 
§  Unsteady boundary layer flow  
§  Intensification / diffusion of tip vortices IGE 
§  Turbulence levels near the ground 

  

•  Investigate effect of scaling parameters - number of blades, Re, 
tip changes 

 
 

•  Validate computational results with experimental data 
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  Computational Methodology  
  OVERTURNS: Overset Transonic Unsteady Reynolds 

Navier Stokes Solver 
Compressible overset structured RANS 

 

•  Temporal discretization  
§  2nd order backwards differencing 
§  Implicit approximate factorization developed by Pulliam and Chaussee 
§  Lower Upper Symmetric Gauss Seidel (LUSGS) 
§  Turkel Preconditioning for Low Mach numbers 

•  Spalart-Allmaras turbulence model with rotational correction   
§  Physical reduction of turbulence levels in vortices 

•  Connectivity using Implicit Hole cutting (IHC) technique 
§  Automates transfer of information between meshes 

•  Spatial discretization  
§   Flux calculation done using Roe’s Flux Difference splitting  
§  Inviscid terms:  3rd order MUSCL scheme utilizing Koren’s limiter and  
     5th order WENO scheme 
§  Viscous terms:  2nd order central 
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Experiments Used for CFD Validation  
• 2 bladed micro-scale rotor experiments, radius = 0.086 m 
  
• 1 bladed sub-scale experiments, radius = 0.5 m 

  

Experimental Setup, Lee et al. 
(2008) at University of Maryland 

Experimental Setup, Milluzzo et al. 
(2010) at University of Maryland 

• 2 bladed micro-scale rotor experiments, radius = 0.086 m 
  
• 1 bladed sub-scale experiments, radius = 0.5 m 

Experimental Setup, Lee et al. 
(2008) at University of Maryland 
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•  2-bladed rotor setup of Lee et al. 
§  Untwisted rectangular 
§  Radius = 0.086 m 
§  Chord = 0.019 m  
§  Collective setting of 12˚ 

 
•  Airfoil profile 

§  Blunt Leading and trailing edge 
 
•  Flow conditions 

§  Retip = 32,400, Reroot = 6480 
§  Mtip  = 0.08 
 

•  Ground plane distances 
§  h/R = 0.5, 1.0 and 1.5  
 
 

Experimental Setup, Lee et al.  
at University of Maryland 

Experimental Setup for Validation 2-Bladed Micro-Scale Rotor Setup  

Airfoil profile  
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267 X 93 X 50 187 X 180 X 304 
Leading 

edge 

Blade tip 

Blade mesh 

Background mesh 

•  Quiescent flow at far-
field boundaries of the 
computational domain 

 
•  Simulation done on one 

blade assuming spatial 
periodicity (model only 
180 degrees of azimuth) 

•  L o w f r e e - s t r e a m 
turbulence in all meshes 
(eddy viscosity ~ 0.1) 

•  Rigid blade assumed 
 
•  Rotor hub not modeled    

Mesh System (h/R = 1.0) CFD Mesh Setup 

•  Added vortex tracking 
grids  

Added overset  
meshes close to ground 



13 

  Added Vortex Tracking Grids  

Leading 
edge 

Blade tip 

Background mesh 

 

•  VTG adapted every 3 revolutions until tip vortex position are converged  

VTG used  
In simulation 

Instantaneous VTG  

•  3-D helical shaped meshes 

•  Vortex trajectory extracted based on maximum vorticity magnitude 
  

•  2-D planar Cartesian meshes placed at 0.75 deg of azimuth 

2D VTG planar 
section 
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   Added Overset Meshes 
 

•  Added system of overset meshes in stair – step manner 
 

•  Limits cell size difference between consecutive overset meshes 

•  Overset mesh refined to 3.2R  to accurately resolve tip vortices 
 
 

Blade tip 

Background mesh 

System of overset meshes 

Main background mesh 

Blade mesh 

3.2R 1.6R Overset mesh 1 

Overset mesh 2 

Overset mesh 3 

Overset mesh 4 
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267 X 93 X 50 187 X 180 X 304 
Leading 

edge 

Blade tip 

Blade mesh 

Background mesh 

Mesh System (h/R = 1.0) Converged Mesh System 
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Converged Mesh System  

Leading 
edge 

Blade tip 

Background mesh 

• Reiterating mesh evolution : (Total mesh points 17.8 million 
points for 1R case) 

§   Step 1: Use of blade and background mesh 
§   Step 2: Addition of overset meshes  
§   Step 3: Adding vortex tracking grids  
§   Step 4: Use of higher order scheme  

Main background mesh 
Blade mesh 

System of overset 
meshes 

Vortex 
tracking 

grids 
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•   

Flow Visualization, h/R = 1.0  Flow Visualization, h/R = 1.0 

•  Computations capture 3 – 3.5 rotor revolutions  
 

•  Finer structures captured at early wake ages  
 

•  Increase in aperiodicity as wake approaches close to ground 

Rotor 
blade  

Iso surfaces of q criterion  
colored by vorticity magnitude  
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r/R = 0.8 

r/R = 0.8 

r/R = 1.25 r/R = 1.5 

r/R = 1.0 

Time-Averaged Radial Velocity, h/R = 1.0 Time-Averaged Radial Velocity, h/R = 1.0 

•  With time-averaging one sees wall jet forming at ground boundary 
 

Computation 
Experiments 

r/R = 0.8 

Computation 
Experiments 

r/R = 1.5 

 

•  At outboard sections wall jet becomes thin and radial velocities  
     increase initially, but then decrease due to spreading 

•  CFD still predicts slightly higher maximum radial velocity and at 
slightly higher wall distance than that measured in experiment 
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 Pressure Contours (atmosphere units) with  
  Velocity Vectors, h/R = 1.5 

•  Tip vortex gets close 
to ground  

•  Interaction of tip 
vortex with ground 

•  Large separation near 
     region near ground  

•  Separation bubble 
detaches and gets 
carried away the other 
tip vortex  

•  Viscous vortex/
boundary layer 
interaction observed 
(Johnson et. al 2010) 
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•  Hovering micro-scale rotor IGE studies resulted in:   
§  Well resolved tip vortices 
§  Ability to analyze rotor wake structure in details 

 Provides framework for larger scale rotor simulations 

Figure courtesy. Sydney et al.  Figure courtesy. Thomas et al.  

Summary and Conclusions: Micro-scale Rotor Simulations 

§  CFD data couple to particle code enables in modeling of 
mechanisms involved in formation of brownout cloud  
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Experiments Used for CFD Validation  
• 2 bladed micro-scale rotor experiments, radius = 0.086 m 
  
• 1 bladed sub-scale experiments, radius = 0.5 m 

  

Experimental Setup, Lee et al. 
(2008) at University of Maryland 

Experimental Setup, Milluzzo et al. 
(2010) at University of Maryland 

• 2 bladed micro-scale rotor experiments, radius = 0.086 m 
  
• 1 bladed sub-scale experiments, radius = 0.5 m 

Experimental Setup, Milluzzo et al. 
(2010) at University of Maryland 



22 

•  1-bladed rotor  
§  Baseline untwisted rectangular 
§  Radius = 0.408 m  
§  Chord = 0.0445 m 
§  4.5 deg Collective setting of 12˚ 

 

•  Airfoil profile 
§  NACA 2415  

•  Flow conditions 
§  Retip = 250,000 
§  Mtip  = 0.24 

•  Ground plane distances 
§  h/R = 1.0 

 
 

Experiments performed for four blade tip shapes: 
Rectangular,  Swept, BERP-like and Slotted  

 

1-Bladed Sub-Scale Rotor Setup  

Experimental Setup, Milluzzo et al. 
(2010) at University of Maryland 
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 Sub-Scale Rotor Blade Tips 

Computational  
blade tips  

Experimental 
blade tips  

Rotor tips 
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Slotted Mesh Details  

Leading 
edge 

Blade tip 

Background mesh 

 

•  Slots connect leading edge of the blade to the side edge  

•  Rectangular computational slots to avoid grid volumes from 
going to zero compared to circular slots of experiments  

Experimental slotted tip  Computational slotted tip  
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 Methodology Extension – Micro to Sub-scale rotor  

       Micro-scale       Sub-scale 

M = 0.085  M = 0.24 
Re = 35,000 Re = 250,000 
Aspect Ratio = 4.387 Aspect Ratio = 9.132 

•  Micro-scale rotor simulation used 17.8 million mesh points, h/R = 1.0 

•  1-bladed rotor requires modeling of entire 360 degrees azimuth 
 

•  Similar mesh resolution for sub-scale rotor requires 120 million points 
(using 566 processors for optimum load distribution)  

 

•  Strategy is prohibitive with limited computational resources 

Micro-scale Rotor Mesh System 
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Mesh System : 1-bladed Sub-scale Rotor  

Background mesh 

0.8R 1.6 R 

Blade mesh Blade mesh 

Background 
mesh 

Background 
mesh 

 

•  Simulation performed for 15 revolutions  
 

•  Background mesh adapted to follow the path of rotor wake 
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Leading 
edge 

Blade tip 

Background mesh 

Background 
mesh 

Vortex 
Tracking grid 

Funnel 
shaped grid 

Cross sectional area 
of full mesh system  

Background 
mesh 

Vortex Tracking 
grid 

Funnel shaped 
grid 

•  61.82 million mesh 
points 

•  240 processors 
     on DOD’s Copper   

system    

Mesh System : 1-bladed sub-scale rotor  
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Modeling Difficulties for Sub-Scale Rotor  

Computational 
Experimental 

Core radius growth for rectangular tip  

 

•  Core radius grows to 0.3 chord by 400 degrees in RANS-SA 
computations compared to 0.075 chords in experiments 

 

•  RANS computations unable to predict core radius growth 
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Compare Turbulence Levels of Both Rotor Regimes 

•  Micro-scale rotor shows laminar vortex cores; expected 
theoretically from sub-scale rotor 

•  Higher turbulence levels lead to excessive diffusion of vortices  
 

•  Need of exploring higher fidelity methods than RANS  

Micro-scale rotor Sub-scale rotor 

Contour levels different for illustration  
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Delayed Detached Eddy Simulations (DDES)  
•  Use of hybrid RANS/LES models  
 
•  Near to the wall RANS mode is activated 

(turbulence levels are modeled) 

•  Away from the wall LES mode captures the 
large scale turbulence levels 

•  Technique used is DDES  

•  Implementation costs minimal (Distance 
function modified in Spalart Allamaras 
model 

RANS  

DDES 

Aerospatiale-A airfoil 

DDES shows reduced eddy 
viscosity values compared to 
RANS  (Medida et al.,  2013)  

! !! !!!!!!!!"#! !! ! ! !!"#! !
!!! !!"# !!! !!! !! !

•  Distance function modification  
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Delayed Detached Eddy Simulations (DDES)  

•  Length scale modification required  
     for anistropic grids  

•  Suggested by Scotti et al. (1993) 

! !! !!!!!!!!"#! !! ! ! !!"#! !
!!! !!"# !!! !!! !! !

!! !!!!!! !!!!!!!"#!!!! !!! !!!!!

! !!! !! ! !"#$ ! !!" !!!" !! !
! ! !" !! !"!!!! ! !!"!!!!!!!!!

Vortex Tracking Grid  

Length scale modification  

•  a1,a2 aspect ratio of grids 

•  DDES length scale modification based 
     on isotropic grids  

•  Azimuthal spacing = 0.16c, vertical 
     And horizontal spacing = 0.01c  
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SA-DDES Predicted Turbulence levels  
Contour levels different for illustration  

•  SA-RANS shows order of magnitude higher levels compared  
     to SA-DDES 
 
•  Vortex centers have laminar cores; theoretical expectation  
 
 
 
 
 
 

SA-RANS  SA-DDES (Hybrid RANS/LES) 
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Flow field Visualization at the Blade Tips 

Rotor blade tip 
Swept 

Slotted BERP-
like 

•  Slotted tip diffuses the tip vortex at early wake ages  

Rectangular 

Vorticity magnitude  
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Flow field Visualization at the Blade Tips 

•  Higher turbulent levels in tip vortex for slotted tip  

Turbulence levels near wake 
 

Rectangular Slotted 
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Core Radius Growth with SA-DDES Method 

 

•  Rectangular tip rotor shows similar trajectory of core radius  
 

Computational 
Experimental 

Rectangular  

Computational 
Experimental 

Slotted 

 

•  Slotted tip shows diffusion of core radius (vortex strength 
decreases) 
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Flow Field Close to the Ground   
Swept 

Slotted 

 

•  Slotted tip rotor shows lesser upwash than rectangular tip 

Computational 

Slotted 

Rectangular 

Experimental 
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Summary and Conclusions: Sub-scale Rotor Simulations 

•  Hovering Subscale Rotor IGE studies resulted in:   
§  Important to intelligently cluster mesh system to avoid prohibitive 

costs at larger scales  

§  High levels of turbulence in flow field lead to excessive diffusion 

§  Use of hybrid SA-DDES methodology accurately captures rotor wake 

§  Slotted tip shape shows diffusion of vortices at early wake ages 

§  Close to the ground, flow field shows stronger upwash for three tips 
other than the slotted tip shape 

§  Slotted tip might be an ideal candidate for brownout mitigation at the 
cost of power penalty 
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Thank you  
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Computational Setup 

Leading 
edge 

Blade tip 

Background mesh 

Rotor height above ground  Points (in millions) 

1.5 21.4 
1.0 17.8  
0.5 18.7 

•  18 rotor revs required for flow field to converge 
 
•  Time step size of 0.25 deg 
 
•  10 MBs per 300,000 points  
 
•  32 processors simulation use Intel Xeon 3.2 GHz processors 

•  24 hours for 1440 iterations  

 

•  Distribution of points different rotor heights  
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OGE IGE 

•  Rotor in-ground-effect aerodynamics 
are unsteady and three-dimensional 

•  Vortices persist to older wake ages 

•  Vortices are responsible for strong 
induced velocities near the ground 

•  Near wall flow contains steeply 
embedded velocity gradients and 
vortex-vortex interactions 

Ground plane 

Ground plane 

Rotor Flows in Ground Effect Operation 

Lee et al. (2010) 
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Delayed Detached Eddy Simulations (DDES)  

•  Use of hybrid RANS/LES models  
 
•  Near to the wall RANS mode is activated 

(turbulence levels are modeled) 

•  Away from the wall LES mode captures the 
large scale turbulence levels 

•  Technique used is DDES  

•  Implementation costs minimal (Distance 
function modified in Spalart Allamaras 
model) 

 

RANS  

DDES 

Aerospatiale-A airfoil 

DDES shows reduced eddy 
viscosity values compared to 
RANS  (Medida et al.,  2013)  
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Modeling Difficulties for Sub-Scale Rotor  

 

•  Vertical velocity magnitudes show weaker contours  

•  Difficulties in capturing vortex core size for subscale rotor 
 

 
 

 

Vertical velocity magnitude for rectangular tips 

Experimental Computational 

Rotor blade Rotor blade 
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Simulations with SA-DDES Methodology  

 

•  Vertical velocity magnitudes show comparable levels 

Vertical velocity magnitude for rectangular tips 

Experimental Computational 

Rotor blade Rotor blade Rotor blade 



44 

•   

Flow Visualization, h/R = 1.0  
Expected Vortex Structure (Ramasamy et al. 2004)  

•  Fully laminar: No interaction between adjacent layers of fluid 
 

•  Transitional region: Eddies of varying sizes 

•  Turbulent region 
 


