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Second-order wave equations are common in many fields of science 
and engineering

• scalar wave propagation
• e.g. acoustics

• systems of simple wave equations
• e.g. electromagnetics
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Second-order wave equations are common in many fields of science 
and engineering

• elastic wave equation
• e.g. seismic waves

• Einstein field equations
• e.g. gravity waves
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For many problems numerical dissipation mechanisms are needed, and the 
current state of the art for the SOS is unsatisfactory

• Stability against small perturbations
• low order terms in the mathematical model
• interpolation from overlapping grids
• nonlinearity

• Discontinuities 
• discontinuous material coefficients 
• source terms with abrupt changes
• discontinuous exact solutions

• For second-order systems, the current state of the art is ad hoc addition of 
numerical dissipation

• coefficients chosen experimentally or with “expert judgement”
• see e.g. Henshaw 2006, Hagstrom and Hagstrom 2012

• One alternative is to transform to first-order form and use “upwind methods”
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Upwind methods for first-order hyperbolic systems are powerful tools that 
have seen extensive use and development

• CIR characteristic scheme (Courant, Isaacson and Rees 1952)

• Godunov explicitly incorporated upwinding (Godunov 1959)

• The key idea is the local incorporation of an exact solution
• the effect is to introduce artificial viscosity (Christensen 1990)

• Since then the technique has grown
• flux-corrected transport (Boris and Book 1983)
• piecewise parabolic method (Colella and Woodward1984)
• high-resolution Godunov (vanLeer 1989, Kolgan 2010)
• discontinuous Galerkin (Cockburn and Shu 1989)
• essentially nonoscillatory (Harten 1983)
• weighted essentially  nonoscillatory (Jiang et. al. 1996)

• Despite the vast literature on upwind methods, there appeared to be no attempt to 
generalize to wave equations in second-order form
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There are many good reasons to consider second-order wave equations 
directly rather than simply converting to first-order form

• Converting from second- to first-order form generally increases the system size
• from ~3 to ~6 for Maxwell’s equations (Henshaw 2006)
• from ~3 to ~10 for Elasticity (Appelo et. al. 2012)

• Converting to first-order form introduces constraint equations (e.g. St. Venant)
• constraints are challenging in the context of discretization (Kreiss et. al. 2007)

• The Laplacian is naturally self-adjoint
• leads to naturally compact discretizations

• Many systems occur naturally in second-order form (e.g. acoustics, elasticity, EFE)
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• Consider the second order wave equation on a semi-infinite domain

• Discretize on an overlapping grid using second order centered differences

• Define stability to mean that the solution remains uniformly bounded in time

• Normal mode theory leads to the following eigenvalue problem

6.1 Stability of the second-order wave equation

Let us consider the second-order scalar wave equation in one space dimension for u(x, t) defined on the semi-infinite
interval Ω = (−∞, b] for t ≥ 0:

∂2u

∂t2
=

∂2u

∂x2
, x ∈ (−∞, b), t > 0,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x) x ∈ (−∞, b),

u(b, t) = g(t), |u(·, t)| < ∞, t > 0.

Here, the initial and boundary conditions are assumed to be consistent so that u0(b) = g(0) and v0(b) = g′(0), and we
look for solutions that remain bounded as x → −∞. We solve this initial-boundary-value problem on an overlapping

grid as shown in Figure 3. The solution is approximated by the grid functions u(m)
j (t) ≈ u(x(m)

j , t), m = 1, 2, on their

component grids x(m)
j = x(m)

a + jhm. The grid spacings are h1 and h2, assumed positive, and let h = min(h1, h2).
This overlapping grid is representative of the grids we generally use where there is a narrow boundary-fitted grid
with a fixed number of grid points in the direction normal to the boundary overlapping with a large background grid.
The red grid in the figure with m = 1 models the boundary-fitted grid and has N = constant as the mesh is refined.
The blue grid in the figure with m = 2 represents the background grid (and is of infinite extent on the scale of the

width of the boundary-fitted grid). Values for the interpolated end points u(1)
0 and u(2)

q are obtained from values on
grids m = 2 and m = 1, respectively, using interpolation as indicated in the figure.

· · · u(2)
−1 u(2)

0 u(2)
1 u(2)

q−1 u(2)
q

u(1)
0 u(1)

1 u(1)
p u(1)

p+1u(1)
p+2 · · · u(1)

N

Figure 3: One-dimensional overlapping grid for the semi-infinite problem.

For purposes of the present analysis, we consider approximations of the wave equation that are continuous in
time and discrete in space. A centered approximation is
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Here r + 1 is the number of grid points in the interpolation stencil, and the interpolation coefficients ak and bk are
given by Lagrange interpolation. For example,

a0 = (1 − α), a1 = α,
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ũ(1)
0 =

r�

k=0

akũ
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In this talk we are primarily concerned with stability of wave equations on 
overlapping grids which has historically been challenging
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• Normal mode theory for the second order system says

• Solutions to the eigenvalue problem grow as 

• If                   , then by our definition the discretization is unstable

• Assume a solution with parameters  

• Then there is a second solution with parameters 

• It is possible to find solutions numerically ... e.g.

• Therefore the artificial dissipation parameter must grow with the mesh ... i.e.

• A similar analysis is done for the FOS

• The upwind dissipation has the correct form and naturally stabilizes the scheme
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Now a reminder of how upwinding works for the advection equation (first-
order formulation)

• The governing equations are 

• Using characteristics 

• Averaging the exact solution at the next time level gives

x

t

t

t+�t

xi� 3
2

xi� 1
2

xi+ 1
2

xi+ 3
2

xi�1 xi xi+1

qni�1 qni qni+1

C+: x = xi+ 1
2
+ ct

qn+1
i

C+

Figure 1: This figure illustrates the geometric construction of the first-order Godunov scheme for the first-order wave
equation qt + cqx = 0. The piecewise constant function that equals to qni on cell (xi� 1

2
, xi+ 1

2
) is exactly advanced to

to time t + �t. This is used to define discrete cell centered values, qn+1
i , by integrating the solution over the cell.

The resulting scheme is the standard first-order accurate upwind scheme.

For � = t � tn, the exact solution to (1) with initial conditions Q0(x) can be found using the method of
characteristics and is given by

Q(x, �) = qni , for x� c� ⌅ (xi� 1
2
, xi+ 1

2
).

The discrete cell-centered solution at the next time-step tn+1 is defined as the cell average of Q(x,�t),

qn+1
i =

1

hx

⇤ x
i+1

2

x
i� 1

2

Q(x,�t)dx.

For time steps satisfying �t ⇥ hx/c this construction is illustrated in Figure 1 and gives the standard
first-order accurate upwind scheme,

qn+1
i =

1

hx

�
c�tqni�1 + (hx � c�t)qni

⇥
,

= qni � c�t

hx
(qni � qni�1). (2)

Remark. Stability analysis reveals that the upwind scheme (2) is stable under the constraint �t ⇥ hx/c.
We now pursue a similarly intuitive construction applied to the one-dimensional second-order wave

equation. Consider the initial value problem for the second-order wave equation (SOWE) in one-dimension,

⇥2u

⇥t2
= c2

⇥2u

⇥x2
, �⇤ < x < ⇤,

u(x, 0) = u0(x),
⇥u

⇥t
(x, 0) = v(x, 0) = v0(x).

In analogy with elasticity, we call u = u(x, t) the displacement and v = ⇥u/⇥t the velocity. An upwind
method to solve the SOWE can be constructed as follows. Let un

i and vni , denote grid functions that are
approximations to u(xi, tn) and v(xi, tn), respectively. Define a piecewise smooth representation of the
discrete solution at time tn (as shown in Figure 2) by

U0(x) = un
i +

x� xi

hx
(un

i+1 � un
i ), for x ⌅ (xi, xi+1), (3)

V0(x) = vni for x ⌅ (xi� 1
2
, xi+ 1

2
). (4)

Here U0(x) is the continuous and piecewise linear function that passes through the values (xi, un
i ). V0(x) is

the piecewise constant function that passes through the points (xi, vni ) and is constant on cells (xi� 1
2
, xi+ 1

2
).

The exact solution corresponding to the initial conditions U0(x) and V0(x) can be determined from the
well known d’Alembert solution to the second-order wave equation [13]. Letting � = t� tn, this solution is

4
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We can follow a similar procedure for the second-order wave equation

• The governing equations are 

• Using d’Alembert’s solution 

• Averaging at the next time level gives

@
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2
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2 @
2
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2
, �1 < x < 1,

u(x, 0) = u0(x),
@u

@t

(x, 0) = v(x, 0) = v0(x)
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Figure 2: The approximate solution for the second-order wave equation in one-dimension is represented by the discrete
grid functions un

i (displacement) and vni (velocity) along with the corresponding piecewise smooth functions shown
in the figure.

given by

U(x, ⇥) =
1

2
(U0(x+ c⇥) + U0(x� c⇥)) +

1

2c

� x+c�

x�c�
V0(�)d�, (5)

V (x, ⇥) =
⇤

⇤t
U(x, ⇥) =

c

2
(U ⇥

0(x+ c⇥)� U ⇥
0(x� c⇥)) +

1

2
(V0(x+ c⇥)� V0(x� c⇥)) . (6)

As shown in Fig. 3, the form of this solution depends on the representation of U0(x) and V0(x) given in

x

t

xi� 3
2

xi� 1
2

xi+ 1
2

xi+ 3
2
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C+C� C+C� C+C�

�t

Figure 3: The x� t diagram showing the characteristics emanating from the cell centers and cell faces.

(3)-(4) and by the characteristics, C+ : dx/dt = c, and C� : dx/dt = �c, that emanate from the points
xi± 1

2
and xi. To reconstruct the discrete solution at tn+1 we compute cell averaged values of U(x,�t) and

V (x,�t),

un+1
i =

1

hx

� x
i+1

2

x
i� 1

2

U(�,�t)d�, vn+1
i =

1

hx

� x
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2

x
i� 1

2

V (�,�t)d�.

These integrals can be evaluated explicitly using the expressions (5)-(6) and the equations (3)-(4) for U0(x)
and V0. For c�t/hx < 1

2 this procedure gives the following scheme, denoted by UW1a (for upwind scheme
of order 1, version a),

un+1
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i +�t vni + (
c2�t2

2
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h2
x

8
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4
hxD+D�v

n
i , (7)
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i = vni + c2�t D+D�u

n
i +

c�t

2
hxD+D�v

n
i . (8)

Here D+ and D� are the usual forward and backward divided di⇤erence operators defined by D+wi =
(wi+1 � wi)/hx and D�wi = (wi � wi�1)/hx. For future reference we also note that the undivided forward
and backward di⇤erence operators are defined by�+wi = wi+1�wi and��wi = wi�wi�1. Equations (7)-(8)
define a first-order accurate upwind scheme for the one-dimensional second-order wave equation. A normal
mode analysis shows that the scheme is stable provided �t ⇥ ⇥1ahx/c where ⇥1a = (1+

⌅
5)/4 ⇤ .809. The

formal accuracy of this scheme can be determined by computing the truncation error. However, we proceed
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This method is 1st order accurate and behaves very well for hard problems

• Results for a top-hat initial condition (note the delta functions in V)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Second−Order Wave Equation: u, Top−Hat (UW1a), N=201

x

u

 

 
t=0.1
t=0.3
t=0.5

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

15
Second−Order Wave Equation: v, Top−Hat (UW1a), N=201

x
v

 

 
t=0.1
t=0.3
t=0.5

position velocity

Thursday, October 9, 14



A comparison with standard centered scheme illustrates the effect of upwinding

• The centered scheme is
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In order to be practical (higher order, higher dimensions, variable coefficients, 
nonlinearity, etc ...), a more general construction is needed

• Start by recasting (note this equation is still second-order in space)

• Integrate the v equation in time

• Define exact flux function so that 

• where      is defined to satisfy 
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The incorporation of upwinding comes in the definition of the numerical flux 
function using d’Alembert’s solution

• Recall that the d’Alembert solution is

• Now take           , assume u is smooth, and differentiate in space

• This exact local solution is embedded into the definition of the flux

• Cauchy-Kowalewski to get a single step high-order scheme

• M-point Gaussian quadrature is used to evaluate the fluxes
• 
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These single-step high-order accurate schemes can be compactly expressed 

• For example, the fully discrete 4th order scheme is

where

• Furthermore, the modified equation is found to be
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The fourth order scheme can be analyzed using normal modes

 Theorem: The fourth-order upwind method is 4th order accurate and stable under the 
restriction 

where      is the smallest root of

 For small wave numbers the amplification factor is easily seen to be 
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The generating procedure generalizes to multiple dimensions and curvilinear grids

• Consider a constant coefficient wave equation in d dimensions

• On a curvilinear grid defined by                 the operator can be written

• where
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As before, upwinding is incorporated by embedding the d’Alembert solution

• First we recast the system to explicitly identify a flux

• Now we identify exact differential difference formulae, e.g.

• Finally the d’Alembert solution is embedded
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Time-step stability bounds in high dimension are derived using normal modes

• The actual stability bounds are quite complex so we instead fit simplified bounds

• For high-order, we can also increase the maximal stable time-step by leveraging 
the observation that the upwind dissipation need not be time accurate

dX

n=1

��
n = ⇤�
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�n =
c�t

hn

approximate stability regions
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Before moving on to some numerical results, lets make a few observations

• One aspect I did not talk about is nonlinear limiting (high-resolution)
• this has been explored for 2nd order schemes using MinMod 
• there is a lot of additional exploration that could be done here

• The upwind flux is necessary for stability for all but the 2nd order scheme

• Except for 1st order scheme, the operators are dispersive at leading order

• In developing the methods, I’ve made extensive use of Maple
• implemented a discrete calculus
• automatic code generation
• automatic normal mode analysis and MEs
• structure of the generated code is highly cache efficient
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Trigonometric twilight zone exact solutions verify the accuracy of the solvers

overlapping grid solution (t=0.5) error (t=0.5)
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convergence study• TZ (AKA manufactured solutions) illustrates 
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• The solvers are further verified for an exact 
solution to Maxwells equations on a disk

• Exact Dirichlet boundary conditions are used

Eigenmodes of Maxwell’s equations on a disk with perfect conducting boundaries

overlapping grid EX, t=0.5 HZ, t=0.5
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• Perfect electric conducting (PEC) boundary 
conditions have been  implemented up to 4th 
order accuracy

• Therefore the 6th order results degrade to 
4th order but they are approximately 50x more 
accurate than 4th order results
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Eigenmodes of Maxwell’s equations on a disk with perfect conducting boundaries
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Electromagnetic diffraction off a perfectly conducting cylinder

overlapping grid EY, t=1 HZ, t=1
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by error from 4th 

order BC
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• Diffraction by a PEC cylinder also has a 
known exact solution

• Note that the results from the 6th order code 
are dominated by the 4th order accurate BC
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Trigonometric twilight zone verifies the accuracy of the solvers in 3D

convergence study

• Solvers of order 2-6 have been implemented and verified

• Stability against overlapping grid perturbations is seen for all cases
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Electromagnetic diffraction off a perfectly conducting sphere

convergence study
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• In 3 space dimensions we have preliminary calculations for PEC sphere

• Results from the 2nd and 4th order codes show the expected behavior in terms 
of accuracy and stability

• The 6th order physical BCs needs further work
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Summary

• High-order boundary conditions for Maxwell

• Variable coefficients

• More complex systems of equations such as linear elasticity
 

• Multidomain problems (light propagation through optics, FSI)

• Nonlinear elasticity

Future Work

• By embedding the exact solution of a local problem, we generate stable and high order 
accurate schemes for wave propagation 

• These schemes are robust and shown to be stable in the presence of overlapping grid 
interpolation boundaries

• The schemes have been implemented into an electromagnetics capability using Overture
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