An Overset Mesh Approach for 3D Mixed Element High Order Discretizations

Michael J. Brazell, Jay Sitaraman, Dimitri J. Mavriplis

Department of Mechanical Engineering
University of Wyoming

October 9, 2014

Motivation

- High order methods in aerodynamics
- Higher accuracy with fewer degrees of freedom
- Discontinuous Galerkin finite elements
- Use DG with overset grids
- Nearest neighbor stencil (favorable implications for overset mesh applications)
- Bodies in relative motion
- HELIOS approach: near-body, off-body

Governing Equations

- Compressible Navier-Stokes equations

$$
\frac{\partial U_{m}}{\partial t}+\frac{\partial F_{m i}}{\partial x_{i}}=0
$$

- Conservative variables $U=\{\rho, \rho u, \rho v, \rho w, \rho E\}^{T}$

$$
F=\left\{\begin{array}{ccc}
\rho u & \rho v & \rho w \\
\rho u^{2}+P-\tau_{11} & \rho u v-\tau_{12} & \rho u w-\tau_{13} \\
\rho u v-\tau_{21} & \rho v^{2}+P-\tau_{22} & \rho v w-\tau_{23} \\
\rho u w-\tau_{31} & \rho v w-\tau_{32} & \rho w^{2}+P-\tau_{33} \\
\rho u H-\tau_{1 j} u_{j}+q_{1} & \rho v H-\tau_{2 j} u_{j}+q_{2} & \rho w H-\tau_{3 j} u_{j}+q_{3}
\end{array}\right), ~ \begin{gathered}
\rho E=\frac{P}{\gamma-1}+\frac{1}{2} \rho\left(u^{2}+v^{2}+w^{2}\right)
\end{gathered}
$$

DG Formulation

- Multiply by test function and integrate

$$
\int_{\Omega} \phi_{r}\left(\frac{\partial U_{m}}{\partial t}+\frac{\partial F_{m i}}{\partial x_{i}}\right) \mathrm{d} \Omega=\int_{\Omega} \phi_{r} S_{m} \mathrm{~d} \Omega
$$

- Integrate by parts

$$
R_{m r}=\int_{\Omega}\left(\phi_{r} \frac{\partial U_{m}}{\partial t}-\phi_{r} S_{m}-\frac{\partial \phi_{r}}{\partial x_{i}} F_{m i}\right) \mathrm{d} \Omega+\int_{\Gamma} \phi_{r} F_{m i}^{*} \mathrm{n}_{i} \mathrm{~d} \Gamma=0
$$

- $F_{m i}^{*}$ is numerical used on interior faces
- Inviscid flux: Lax-Friedrichs, Roe, and AUFS
- Viscous flux: symmetric interior penalty (SIP)

DG Solver

- Non-linear system solver: Newton method

$$
J_{m r n s}^{k} \Delta a_{n s}^{k}=\left[\frac{\delta_{m n} M_{r s}}{\Delta \tau}+\frac{\partial R_{m r}^{k}}{\partial a_{n s}^{k}}\right] \Delta a_{n s}^{k}=-R_{m r}^{k}
$$

- Pseudo time step

$$
\Delta \tau=\frac{C F L}{h^{-1}\left(\sqrt{u^{2}+v^{2}+w^{2}}+c\right)}
$$

- Linear system solver: preconditioned flexible-GMRES (Saad 1986)
- Line implicit Jacobi, Gauss-Seidel relaxation, ILU(0)
- Full Jacobian or complex Fréchet derivative

Solver Capabilities

- Hybrid mixed element unstructured meshes (tetrahedra, prisms, pyramids, and hexahedra)
- Polynomial degree up to $p=8$
- p-enrichment and h-refinement using non-conforming elements (hanging nodes)
- Curved elements
- Independent polynomial degree for solution and mapping basis
- Fully parallelized using MPI
- PDE-based Artificial Viscosity
- Spalart-Allmaras turbulence model (negative-SA variant)

Results: Inviscid Cylinder

- $M_{\infty}=0.5$
- p-adaption

Results: Inviscid Cylinder

- $M_{\infty}=0.5$
- p-adaption

Results: Inviscid sphere

- $M_{\infty}=17.6$
- h-adaption

Results: Inviscid CRM

- NASA Common Research Model $M_{\infty}=.85, \alpha=1^{\circ}$
- 1.9 million tetrahedra $p=2$
- 19 million DOF
- Solved on 4096 processors
- Artificial viscosity

High Order Overset

- TIOGA Topology Independent Overset Grid Assembler
- Developed by Jay Sitaraman
- Implicit hole cutting strategy
- Alternating Digital Tree for fast search
- Fully Parallel
- Hybrid mixed element
- Single component grid partition per processor
- Modified with high order call back functions

(Jay Sitaraman)

High Order Overset Motivation

- Bodies in relative motion
- Wind turbines
- Rotorcraft
- Helios strategy with high order accuracy
- Modal Hybrid element DG near-body (tetrahedra, pyramids, prisms, hexahedra)
- Nodal Tensor Product Cartesian DG off-body (Andrew Kirby)

(Jay Sitaraman)

Initialize TIOGA

- Register grid data (nodes and connectivity)
- Set high order call back functions
- Perform overset connectivity
- Node based iblanking
- Convert to cell based iblank
- Remove extra fringe cells (only need nearest neighbors)
- Perform high order connectivity
- Search for donors cells using high order inclusion and find high order interpolation weights
- High order accurate interpolation (equivalent to solver discretization accuracy)

High Order Call Back Functions

- Subroutines written in Fortran DG code but called from within $\mathrm{C}++$ TIOGA library
- Call back functions:
- Create receptor nodes on cell
- Inclusion test (curved cells)
- Interpolation weights from donor cell

- Update solution using Vandermode or Mass matrix

Receptor and Donor Cells

Receptor Cell

Donor Cells

- Create receptor nodes on high order receptor cell
- Quadrature points or equidistant points
- TIOGA performs overset connectivity
- TIOGA finds possible donor cells through ADT search
- High order call back function tests for inclusion of receptor node in high order donor cells

Inclusion test

- Given physical coordinates (x, y, z) on iso-parametric cell
- Search for natural coordinates (r, s, t) in donor cells
- Natural coordinates are on standard straight sided element
- ϕ are the element basis functions and a, b, c are mapping coefficients for spatial coordinates
- m is total modes

$$
\sum_{i=1}^{m} \phi_{i}(r, s, t) a_{i}=x \quad \sum_{i=1}^{m} \phi_{i}(r, s, t) b_{i}=y \quad \sum_{i=1}^{m} \phi_{i}(r, s, t) c_{i}=z
$$

Inclusion test

- Use Newton-Raphson to solve for natural coordinates (r, s, t)

$$
\left[\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t}
\end{array}\right]\left[\begin{array}{c}
\delta r \\
\delta s \\
\delta t
\end{array}\right]=-\left[\begin{array}{l}
\sum_{i=1}^{m} \phi_{i}(r, s, t) a_{i}-x \\
\sum_{i=1}^{m} \phi_{i}(r, s, t) b_{i}-y \\
\sum_{i=1}^{m} \phi_{i}(r, s, t) c_{i}-z
\end{array}\right]
$$

- When natural coordinates are found then determine if within bounds on standard element

$$
\begin{gathered}
r+1<-\epsilon \\
s+1<-\epsilon \\
t+1<-\epsilon \\
r+s+t>\epsilon
\end{gathered}
$$

Solution Reconstruction

- Reconstruct high order polynomial representation of solution by using point values $\left(q_{k}\right)$ from TIOGA
- Two methods: Mass matrix and Vandermode

Mass Matrix Receptor Nodes

Vandermode Receptor Nodes

Solution Reconstruction

- Mass matrix solution Reconstruction
- $m=$ total modes
- $n=$ total quadrature points
- For curved mesh $n>m$

Mass Matrix Receptor Nodes

$$
\begin{aligned}
\sum_{j=1}^{m} \phi_{j}\left(\vec{\xi}_{k}\right) a_{j} & =q\left(\vec{\xi}_{k}\right) \\
\sum_{j=1}^{m} \int_{\Omega} \phi_{i} \phi_{j} a_{j} \mathrm{~d} \Omega & =\int_{\Omega} \phi_{i} q \mathrm{~d} \Omega
\end{aligned}
$$

$$
\text { for } i=1, \ldots, m
$$

$$
M_{i j}=\int_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} \Omega
$$

$$
b_{i}=\int_{\Omega} \phi_{i} q \mathrm{~d} \Omega=\sum_{k=1}^{n} \phi_{i}\left(\vec{\xi}_{k}\right) q\left(\vec{\xi}_{k}\right) w_{k}
$$

$$
a=M^{-1} b
$$

Solution Reconstruction

- Vandermode solution

Reconstruction

- $m=$ total modes
- Number of nodes always equal to number of modes

$$
\sum_{i=1}^{m} \phi_{i}\left(\vec{\xi}_{j}\right) a_{i}=q\left(\vec{\xi}_{j}\right)
$$

Vandermode Receptor Nodes

$$
\begin{aligned}
& \text { for } j=1, \ldots, m \\
& \qquad \begin{aligned}
V_{i j} & =\phi_{i}\left(\vec{\xi}_{j}\right) \\
a & =V^{-1} q
\end{aligned}
\end{aligned}
$$

Mesh Resolution Study

- Ringleb: exact solution to 2D Euler equations
- Hexahedral background grid and refined prismatic grid inside
- Refine by 2 each element and measure error compared to exact solution
- Contours of pressure

Error vs Mesh Size

- Error decreases with $C \Delta x^{p+1}$
- Single grid results for $p=0,1$ match closely to overset

Error vs Mesh size

- Order consistent interpolation gives design accuracy

Overset Cylinder

- Curved structured hexahedral grid around cylinder
- Cartesian hexahedral grid in background
- Field cells plotted

Reduce Fringe

- DG only requires nearest neighbor
- TIOGA returns extra fringe cells
- Minimize fringe to minimize interpolation between grids
- Remove fringe Algorithm:
- Set all iblank to holes
- Loop through faces and check left and right cells iblank
- If field next to field or fringe then set iblank to original value
- If fringe is next to fringe then do nothing
- If fringe is next to hole then do nothing

Overset Cylinder

- Cell iblanking: $1=$ field (red), $0=$ hole (green), $-1=$ fringe (blue)
- DG only requires nearest neighbors
- Remove fringe cells and convert to hole cells

Overset Cylinder

- Cell iblanking: $1=$ field (red), $0=$ hole (green), $-1=$ fringe (blue)
- DG only requires nearest neighbors
- Remove fringe cells and convert to hole cells

Overset Cylinder

$\begin{gathered} \text { iblank } \\ \hline 0.8 \\ \hline 0.4 \\ 0 \\ \hline \\ \hline-0.4 \\ -0.0 .8 \\ \hline \end{gathered}$

- Cell iblanking: $1=$ field (red), $0=$ hole (green), $-1=$ fringe (blue)
- DG only requires nearest neighbors
- Remove fringe cells and convert to hole cells

Overset Cylinder

- Cell iblanking: $1=$ field (red), $0=$ hole (green), $-1=$ fringe (blue)
- DG only requires nearest neighbors
- Remove fringe cells and convert to hole cells

Overset Cylinder

- Cylinder surface is curved using analytic function
- Curvature is pushed radially outward along lines
- Working on generalized CAD mesh curving for complex geometry

Isentropic Vortex Movie

- Isentropic inviscid vortex advected through domain
- Hexahedral background grid and rotated hexahedral grid

Isentropic Vortex

- Vandermode and Mass Matrix interpolation strategies give nearly identical results
- Increased error in overset region
- decreased error in refined region
- overset outperforms single grid

Isentropic Vortex

- Mass more accurate than Vandermode
- Increased error in overset region
- decreased error in refined region
- overset outperforms single grid

Isentropic Vortex

- Vandermode more accurate than Mass
- Increased error in overset region
- decreased error in refined region
- single grid outperforms overset

Isentropic Vortex

- Vandermode more accurate than Mass
- Increased error in overset region
- decreased error in refined region
- single grid outperforms overset

Overset Viscous Sphere

- Strand grid on sphere prisms (curved)
- Hexahedral wake grid
- Tetrahedral off body background grid

Overset Viscous Sphere

- Strand grid on sphere prisms (curved)
- Hexahedral wake grid

Overset Viscous Sphere

- $p=2$
- $R e=1000$
- $M=0.3$
- $6.8 \times 10^{6} \mathrm{DOF}$
- Contours of temperature

Conclusions

- Developed 3D parallel overset method for high order DG discretizations
- High order call back functions
- Curved elements
- Order preserving interpolation
- Requires only nearest neighbor stencil
- Future work
- Combine with off-body cartesian DG solver
- Large scale RANS and/or LES simulations

