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Motivation

I High order methods in aerodynamics

I Higher accuracy with fewer degrees of freedom

I Discontinuous Galerkin finite elements
I Use DG with overset grids

I Nearest neighbor stencil (favorable implications for overset
mesh applications)

I Bodies in relative motion

I HELIOS approach: near-body, off-body



Governing Equations

I Compressible Navier-Stokes equations

∂Um

∂t
+
∂Fmi

∂xi
= 0

I Conservative variables U = {ρ, ρu, ρv , ρw , ρE}T

F =


ρu ρv ρw

ρu2 + P − τ11 ρuv − τ12 ρuw − τ13

ρuv − τ21 ρv2 + P − τ22 ρvw − τ23

ρuw − τ31 ρvw − τ32 ρw2 + P − τ33

ρuH − τ1juj + q1 ρvH − τ2juj + q2 ρwH − τ3juj + q3


ρE =

P

γ − 1
+

1

2
ρ(u2 + v2 + w2)



DG Formulation

I Multiply by test function and integrate∫
Ω
φr

(
∂Um

∂t
+
∂Fmi

∂xi

)
dΩ =

∫
Ω
φrSmdΩ

I Integrate by parts

Rmr =

∫
Ω

(
φr
∂Um

∂t
− φrSm −

∂φr
∂xi

Fmi

)
dΩ+

∫
Γ
φrF

∗
minidΓ = 0

I F ∗mi is numerical used on interior faces
I Inviscid flux: Lax-Friedrichs, Roe, and AUFS
I Viscous flux: symmetric interior penalty (SIP)



DG Solver

I Non-linear system solver: Newton method

Jkmrns∆akns =

[
δmnMrs

∆τ
+
∂Rk

mr

∂akns

]
∆akns = −Rk

mr

I Pseudo time step

∆τ =
CFL

h−1(
√
u2 + v2 + w2 + c)

I Linear system solver: preconditioned flexible-GMRES (Saad
1986)

I Line implicit Jacobi, Gauss-Seidel relaxation, ILU(0)

I Full Jacobian or complex Fréchet derivative



Solver Capabilities

I Hybrid mixed element unstructured meshes (tetrahedra,
prisms, pyramids, and hexahedra)

I Polynomial degree up to p = 8

I p-enrichment and h-refinement using non-conforming
elements (hanging nodes)

I Curved elements

I Independent polynomial degree for solution and mapping basis

I Fully parallelized using MPI

I PDE-based Artificial Viscosity

I Spalart-Allmaras turbulence model (negative-SA variant)



Results: Inviscid Cylinder

I M∞ = 0.5

I p-adaption
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Results: Inviscid Cylinder

I M∞ = 0.5

I p-adaption
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Results: Inviscid sphere

I M∞ = 17.6

I h-adaption



Results: Inviscid CRM

I NASA Common Research Model M∞ = .85, α = 1◦

I 1.9 million tetrahedra p = 2
I 19 million DOF
I Solved on 4096 processors
I Artificial viscosity



High Order Overset

I TIOGA Topology Independent
Overset Grid Assembler

I Developed by Jay Sitaraman
I Implicit hole cutting strategy
I Alternating Digital Tree for fast

search
I Fully Parallel
I Hybrid mixed element
I Single component grid partition

per processor
I Modified with high order call

back functions (Jay Sitaraman)



High Order Overset Motivation

I Bodies in relative motion
I Wind turbines
I Rotorcraft

I Helios strategy with high order
accuracy

I Modal Hybrid element DG
near-body (tetrahedra, pyramids,
prisms, hexahedra)

I Nodal Tensor Product Cartesian
DG off-body (Andrew Kirby)

(Jay Sitaraman)



Initialize TIOGA

I Register grid data (nodes and connectivity)

I Set high order call back functions

I Perform overset connectivity

I Node based iblanking

I Convert to cell based iblank

I Remove extra fringe cells (only need nearest neighbors)
I Perform high order connectivity

I Search for donors cells using high order inclusion and find high
order interpolation weights

I High order accurate interpolation (equivalent to solver
discretization accuracy)



High Order Call Back Functions

I Subroutines written in Fortran DG
code but called from within C++
TIOGA library

I Call back functions:
I Create receptor nodes on cell
I Inclusion test (curved cells)
I Interpolation weights from donor

cell
I Update solution using

Vandermode or Mass matrix



Receptor and Donor Cells

Receptor Cell Overset Connectivity Donor Cells

I Create receptor nodes on high order receptor cell
I Quadrature points or equidistant points

I TIOGA performs overset connectivity

I TIOGA finds possible donor cells through ADT search

I High order call back function tests for inclusion of receptor
node in high order donor cells



Inclusion test

I Given physical coordinates (x , y , z) on iso-parametric cell
I Search for natural coordinates (r , s, t) in donor cells
I Natural coordinates are on standard straight sided element
I φ are the element basis functions and a,b,c are mapping

coefficients for spatial coordinates
I m is total modes

m∑
i=1

φi (r , s, t)ai = x
m∑
i=1

φi (r , s, t)bi = y
m∑
i=1

φi (r , s, t)ci = z

(x,y,z) (r,s,t)



Inclusion test

I Use Newton-Raphson to solve for natural coordinates (r , s, t)

 ∂x
∂r

∂x
∂s

∂x
∂t

∂y
∂r

∂y
∂s

∂y
∂t

∂z
∂r

∂z
∂s

∂z
∂t

 δr
δs
δt

 = −

 ∑m
i=1 φi (r , s, t)ai − x∑m
i=1 φi (r , s, t)bi − y∑m
i=1 φi (r , s, t)ci − z


I When natural coordinates are found then determine if within

bounds on standard element

(x,y,z) (r,s,t)

r + 1 < −ε

s + 1 < −ε

t + 1 < −ε

r + s + t > ε



Solution Reconstruction

I Reconstruct high order polynomial representation of solution
by using point values (qk) from TIOGA

I Two methods: Mass matrix and Vandermode

Mass Matrix Receptor Nodes

q q1 2

Vandermode Receptor Nodes

q q1 2



Solution Reconstruction

I Mass matrix solution
Reconstruction

I m = total modes

I n = total quadrature points

I For curved mesh n > m

Mass Matrix Receptor Nodes

q q1 2

m∑
j=1

φj(~ξk)aj = q(~ξk)

m∑
j=1

∫
Ω
φiφjaj dΩ =

∫
Ω
φiqdΩ

for i = 1, ...,m

Mij =

∫
Ω
φiφjdΩ

bi =

∫
Ω
φiqdΩ =

n∑
k=1

φi (~ξk)q(~ξk)wk

a = M−1b



Solution Reconstruction

I Vandermode solution
Reconstruction

I m = total modes

I Number of nodes always
equal to number of modes

Vandermode Receptor Nodes

q q1 2

m∑
i=1

φi

(
~ξj

)
ai = q

(
~ξj

)
for j = 1, ...,m

Vij = φi

(
~ξj

)
a = V−1q



Mesh Resolution Study

I Ringleb: exact solution to
2D Euler equations

I Hexahedral background grid
and refined prismatic grid
inside

I Refine by 2 each element
and measure error compared
to exact solution

I Contours of pressure



Error vs Mesh Size

I Error decreases with C∆xp+1

I Single grid results for p = 0, 1 match closely to overset

10
-3

10
-2

10
-1

10
-10

10
-5

∆ x

L
2
 E

rr
o
r

 

 
p=0, slope = 0.80

p=1, slope = 1.91

p=2, slope = 2.82

p=3, slope = 3.97

p=4, slope = 4.70

single grid



Error vs Mesh size
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I Order consistent interpolation gives design accuracy



Overset Cylinder

I Curved structured hexahedral grid around cylinder

I Cartesian hexahedral grid in background

I Field cells plotted



Reduce Fringe

I DG only requires nearest neighbor

I TIOGA returns extra fringe cells

I Minimize fringe to minimize interpolation between grids
I Remove fringe Algorithm:

I Set all iblank to holes
I Loop through faces and check left and right cells iblank
I If field next to field or fringe then set iblank to original value
I If fringe is next to fringe then do nothing
I If fringe is next to hole then do nothing



Overset Cylinder

I Cell iblanking: 1=field (red), 0=hole (green), -1=fringe (blue)

I DG only requires nearest neighbors

I Remove fringe cells and convert to hole cells
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Overset Cylinder

I Cell iblanking: 1=field (red), 0=hole (green), -1=fringe (blue)

I DG only requires nearest neighbors

I Remove fringe cells and convert to hole cells



Overset Cylinder

I Cylinder surface is curved using analytic function

I Curvature is pushed radially outward along lines

I Working on generalized CAD mesh curving for complex
geometry



Isentropic Vortex Movie

I Isentropic inviscid vortex advected through domain

I Hexahedral background grid and rotated hexahedral grid


vortex_movie.avi
Media File (video/avi)



Isentropic Vortex

I Vandermode and
Mass Matrix
interpolation
strategies give nearly
identical results

I Increased error in
overset region

I decreased error in
refined region

I overset outperforms
single grid
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Isentropic Vortex

I Mass more accurate
than Vandermode

I Increased error in
overset region

I decreased error in
refined region

I overset outperforms
single grid
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Isentropic Vortex

I Vandermode more
accurate than Mass

I Increased error in
overset region

I decreased error in
refined region

I single grid
outperforms overset
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Isentropic Vortex

I Vandermode more
accurate than Mass

I Increased error in
overset region

I decreased error in
refined region

I single grid
outperforms overset
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Overset Viscous Sphere

I Strand grid on sphere
prisms (curved)

I Hexahedral wake grid

I Tetrahedral off body
background grid



Overset Viscous Sphere

I Strand grid on sphere prisms (curved)

I Hexahedral wake grid



Overset Viscous Sphere

I p = 2

I Re = 1000

I M = 0.3

I 6.8× 106 DOF

I Contours of
temperature



Conclusions

I Developed 3D parallel overset method for high order DG
discretizations

I High order call back functions
I Curved elements
I Order preserving interpolation
I Requires only nearest neighbor stencil

I Future work
I Combine with off-body cartesian DG solver
I Large scale RANS and/or LES simulations


