

A General Implicit Artificial Boundary Scheme for Chimera Methods

Dr. Marshall Galbraith

Massachusetts Institute of Technology Department of Aeronautics and Astronautics galbramc@mit.edu

Dr. Robert Knapke University of Cincinnati School of Aerospace Systems knapkerd@email.uc.edu

Dr. Paul D. Orkwis

University of Cincinnati School of Aerospace Systems Paul.Orkwis@uc.edu

Dr. John Benek Air Force Research Laboratory Computational Science Branch_Center of Excellence John.Benek@wpafb.af.mil

Motivation

- Chimera Overset Grid Method
 - Complex Geometries
 - "Hot swap" Geometric Features
 - Moving Grids with Relative Motion
 - Store Separation
 - Rotorcraft

- **Explicit Artificial Boundaries**
 - Solve Decoupled System
 - Limits CFL Number with Increasing Number of Processor
- Implicit Artificial Boundaries
 - Significant Increased Parallel Performance
 - It's easier than it sounds

Discretization Assumptions

Outline

- Explicit/Implicit Chimera
- Sparse Iterative Solvers – Preconditioners
- Distributed Memory Parallelism
- Discontinuous Galerkin Method
- Inviscid/Viscous Flow Examples
- Conclusion and Future Work

Discretization Assumptions

Outline

- Explicit/Implicit Chimera
- Sparse Iterative Solvers – Preconditioners
- Distributed Memory Parallelism
- Discontinuous Galerkin Method
- Inviscid/Viscous Flow Examples
- Conclusion and Future Work

Euler/Navier-Stokes Equations in Conservation Form

$$\nabla \cdot \vec{F}(Q) = 0$$

- **Discrete Form**
 - Finite Difference
 - Finite Volume
 - Finite Element

$$R(Q) = 0$$

GTSL UNIVERSITY

Cincinnati

Newton's Method

$$\frac{\partial R(Q)}{\partial Q} \Delta Q = -R(Q) \qquad A \Delta Q = -R(Q)$$

- Chimera Interpolation Operator
 Linear Operator (don't think 2nd order accuracy)
 Polynomial Basis Functions
 Radial Basis Functions

 - Trigonometric Basis Functions
 - etc.

$$I_h(Q) = \sum Q_i \varphi_i$$

$$\frac{\partial I_h(Q)}{\partial Q} \Delta Q = I_h(\Delta Q) = \sum \Delta Q_i \varphi_i$$

Newton's Method

 $A\Delta Q = R$

Grid 1 Grid 2

$$R^{1}(Q^{1}, I_{h}(Q^{2})) = 0$$
 $R^{2}(Q^{2}, I_{h}(Q^{1})) = 0$

Explicit Artificial Boundary

$$\begin{bmatrix} A^{1} & 0 \\ 0 & A^{2} \end{bmatrix} \begin{bmatrix} \Delta Q^{1} \\ \Delta Q^{2} \end{bmatrix} = \begin{bmatrix} R^{1}(Q^{1}, I_{h}(Q^{2})) \\ R^{2}(Q^{2}, I_{h}(Q^{1})) \end{bmatrix}$$
$$A^{1} = \frac{\partial R^{1}}{\partial Q^{1}} \qquad A^{2} = \frac{\partial R^{2}}{\partial Q^{2}}$$

Solve Decoupled System $A^{1} \Delta Q^{1} = R^{1}(Q^{1}, I_{h}(Q^{2}))$ $A^{2} \Delta Q^{2} = R^{2}(Q^{2}, I_{h}(Q^{1}))$

- Unstructured A Matrix

 Explicitly add Cⁱ Matrices
- Structured Aⁱ Matrix

 Tri-, Penta-, Hepta-diagonal
 - Sparse Iterative Solver
 No Explicit Cⁱ Matrices

Implicit Artificial Boundary

$$\begin{bmatrix} A^{1} & C^{1} \\ C^{2} & A^{2} \end{bmatrix} \begin{bmatrix} \Delta Q^{1} \\ \Delta Q^{2} \end{bmatrix} = \begin{bmatrix} R^{1}(Q^{1}, I_{h}(Q^{2})) \\ R^{2}(Q^{2}, I_{h}(Q^{1})) \end{bmatrix}$$
$$C^{1} = \frac{\partial R^{1}}{\partial Q^{2}} \qquad C^{2} = \frac{\partial R^{2}}{\partial Q^{1}}$$

- Iterative methods for sparse linear systems

 <u>http://www-users.cs.umn.edu/~saad/books.html</u>
- Restarted GMRES
 - Simple Fortran Code Available
 - <u>http://people.sc.fsu.edu/~jburkardt/f_src/mgmres/mg</u> <u>mres.html</u>
- Fundamental Operations
 - Dot products
 - Sparse Matrix-Vector Multiplication
- Slow without Preconditioner

- Incomplete LU
- ARC3D Beam-Warming block tridiagonal scheme.
- F3D Steger-Warming 2-factor scheme.
- ARC3D diagonalized Beam-Warming scalar pentadiagonal scheme.
- LU-SGS algorithm.
- D3ADI algorithm with Huang subiteration.
- ARC3D Beam-Warming with Steger-Warming flux split jacobians.
- SSOR algorithm (with subiteration)

12th Overset Symposium, 9 Oct 2014

Receiver Grid

Interpolation

Implicit Artificial Boundary

 $\begin{bmatrix} A^{1} & C^{1} \\ C^{2} & A^{2} \end{bmatrix} \begin{bmatrix} \Delta Q^{1} \\ \Delta Q^{2} \end{bmatrix} = \begin{bmatrix} R^{1}(Q^{1}, I_{h}(Q^{2})) \\ R^{2}(Q^{2}, I_{h}(Q^{1})) \end{bmatrix}$ $C^{1} = \frac{\partial R^{1}}{\partial Q^{2}} \qquad C^{2} = \frac{\partial R^{2}}{\partial Q^{1}}$

GMRES: Matrix-Vector Multiplication

Artificial Boundary Linearization $C^{1} \Delta Q^{2} = \frac{\partial R^{1}(Q^{1}, I_{h}(Q^{2}))}{\partial Q^{2}} \Delta Q^{2}$

Chain Rule $C^{1} \Delta Q^{2} = \frac{\partial R^{1}(Q^{1}, I_{h}(Q^{2}))}{\partial I_{h}(Q^{2})} \frac{\partial I_{h}(Q^{2})}{\partial Q^{2}} \Delta Q^{2}$

Linear Interpolation Operator $\frac{\partial I_h(\boldsymbol{Q}^2)}{\partial \boldsymbol{Q}^2} \Delta \boldsymbol{Q}^2 = I_h(\Delta \boldsymbol{Q}^2)$

Interior Flux Linearization

Matrix-Vector Product

 $Q^{2} \qquad \text{Mapping}$ $C^{1} \Delta Q^{2} = \frac{\partial R_{i}^{1} \left(Q_{L}^{1}, I_{h} \left(Q^{2} \right) \right)}{\partial Q_{R}^{1}} I_{h} \left(\Delta Q^{2} \right) = \widetilde{C}^{1} I_{h} \left(\Delta Q^{2} \right)$

Interior Jacobian Array of Matrices RHS Interpolation Operator Array of Vectors 12th Overset Symposium, 9 Oct 2014

Preconditioner Omits C Matrices

Jacobi as $p \rightarrow n$

Discretization Assumptions

Outline

- Explicit/Implicit Chimera
- Sparse Iterative Solvers – Preconditioners
- Distributed Memory Parallelism
- Discontinuous Galerkin Method
- Inviscid/Viscous Flow Examples
- Conclusion and Future Work

Discontinuous Galerkin Chimera Scheme

Discontinuous Galerkin $\phi \nabla \cdot \vec{F} d\Omega = 0$ – Weak Form

 ϕ - Legendre Polynomials

GTSI

Cincinnati

$$R(Q^+, Q^-) = \int_{\Gamma_e} \phi \vec{F}(Q^+, Q^-) \cdot \vec{n} d\Gamma - \int_{\Omega_e} \nabla \phi \cdot \vec{F}(Q^-) d\Omega = 0$$

- Approximate Riemann Solver by Roe
- BR2 Viscous Scheme
- DG-Chimera
 - Natural Interpolation Operator (Solution is Polynomials)
 - Curved Elements
 - Reduces to a Zonal Interface (Abutting Meshes)
 - No Orphan Points due to Fringe Points

Discretization Assumptions

Outline

- Explicit/Implicit Chimera
- Sparse Iterative Solvers – Preconditioners
- Distributed Memory Parallelism
- Discontinuous Galerkin Method
- Inviscid/Viscous Flow Examples
- Conclusion and Future Work

• Inviscid SKF 1.1 Airfoil $- M_{\infty} = 0.4$ $- \alpha = 2.5^{\circ}$

• Viscous Subsonic Circular Cylinder $- M_{\odot} = 0.25$ - Re = 40

Focus on Solution Time
 – Explicit vs. Implicit Chimera

Time Integration and Compute Resources

Steady State

 Quasi-Newton

$$\left(\frac{M}{\Delta t}+\frac{\partial R}{\partial Q}\right)\Delta Q=R$$

$$CFL^{n+1} = CFL^0 \frac{\left\|R^0\right\|}{\left\|R^n\right\|}$$
$$CFL_{max} = 1e30$$

- GMRES Krylov Solver
 - ILU1 Preconditioner
 - Converged to 1e-11 Each Newton Iteration
- Intel Core 2 Duo 3.0 GHz processor 8 GB RAM
 - 10 Compute Nodes
 Ethermotic Composition
 - Ethernet Connection
- MPI Parallelism
 - Timings for 1, 2, 4, and 8 Processors
 - 1 MPI Process per Node (Maximize Communication)
- Shared Memory Multi-Threaded – 1 Grid Per Thread

^{12&}lt;sup>th</sup> Overset Symposium, 9 Oct 2014

SKF 1.1 Airfoil ($M_{\infty} = 0.4$, $\alpha = 2.5^{\circ}$) Explicit Chimera Speedup

17

SKF 1.1 Airfoil ($M_{\infty} = 0.4$, $\alpha = 2.5^{\circ}$) Implicit Chimera Speedup

SKF 1.1 Airfoil ($M_{\infty} = 0.4$, $\alpha = 2.5^{\circ}$) Implicit Convergence History

SKF 1.1 Airfoil ($M_{\infty} = 0.4, \alpha = 2.5^{\circ}$) Cp Contour Lines

Circular Cylinder (Re = 40) Solution Time

Subsonic Circular Cylinder ($M_{\infty} = 0.25$) GTSL UNIVERSITY OF Cincinnati **Cp/Entropy Rise Contour Lines**

27

- Implicit Artificial Boundaries
 - Included with GMRES Matrix-Vector Multiplication
 - Omitted in Preconditioner
 - Minimal Information Communicated
 - Significantly Reduces Execution Time
- Few Modifications Required to Existing Codes
 - ~95% of Code already Exists
 - Spares Matrix-Vector Multiplication
 - Restarted GMRES Fortran Code
 - <u>http://people.sc.fsu.edu/~jburkardt/f_src/mgmres/</u> mgmres.html
- Demonstrated on Inviscid/Viscous Flows

Thank you! Questions?

