THE UNIVERSITY of TENNESSEE at CHATTANOOGA SINCENTER NATIONAL CENTER for COMPUTATIONAL ENGINEERING

An Adaptive Streamline/Upwind Petrov Galerkin Overset Grid Scheme for the Navier-Stokes Equations with Moving Domains

Chao Liu, Behzad R. Ahrabi, James C. Newman III, W. Kyle Anderson SimCenter: National Center for Computational Engineering University of Tennessee at Chattanooga 12th Symposium on Overset Composite Grids and Solution Technology

Motivation

- Advantages of finite elements
 - Extendable to high-order accuracy
 - Stencil is contained inside the element
- Benefits for overset grid schemes
 - Minimal grid overlapping required
 - Facilitates hole cutting
 - Curved geometry poses minimal difficulties

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
- Conclusion

Hole Cutting

- Hole cutting includes two steps
 - Identify invalid cells
 - Selection among valid cells

Grid-1

Grid-2

Example of 2 airfoil overset grids

Identify Invalid Cells

- On Grid-1, determine location of Airfoil-2. Cells in Grid-1 that intrude or lie inside of Airfoil-2 are invalid, and need to be removed from domain. Repeat procedure on Grid-2 for Airfoil-1.
- Direct wall cut is used to identify invalid cells

Grid 1

Grid 2

Grids after direct wall cut (all invalid cells removed)

SIMCENTER NATIONAL CENTER for COMPUTATIONAL ENGINEERING

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

Select Among Valid Cells

- To minimize grid overlapping, among the valid cells, certain cells are selected for simulation, the remainder are removed.
 - Mesh quality
 - Automation
 - Parallel
- No definitive selection process. Two approaches are explored:
 - Existing Implicit Hole Cutting (IHC) method
 - Novel Elliptic Hole Cutting (EHC) method

IHC

- Developed by Lee & Baeder, 2003
- A cell select process based on *cell-quality*
 - Each grid node is viewed as a sampling point
 - For each sampling point, all candidate donors are identified
 - Only the candidate with highest *cell-quality* is actived
- *cell-quality* is a grid metric (inverse of cell volume, aspect ratio...)
- User control is optional
 - Not needed in getting valid overset grids
 - In some cases, it's needed to make grid "continuous"
- All nodes in overlapping region need to be searched (expensive in parallel implementation)

IHC

Mesh after original IHC

- Cell-quality defined as the inverse of cell volume
- Smallest cells are selected across the whole domain
- High *cell-quality* does not gurantee a high-quality overset mesh. "Continuity" of cell selection is often more important

- New approach. AIAA paper 2014-2980
- Solve a Poisson equation on each grid. Select the cells with the highest pseudo temperature.

$$\nabla^2 T = f$$

- Assign high T to nodes you really want
 - boundary conditions
- Assign low T to nodes you really don't want
- Let Poisson solver take care the rest of the nodes
- No need to solve the exact Poisson problems
- No need for the solutions to fully converge

- Choices of BCs
 - Choice we have been using
 - Invalid nodes are set to min value (T= -1)
 - Nodes on wall, and nodes in non-overlap regions are set to max value (T= 1)
 - The rest of the boundaries are treated as adiabatic wall (T_n= 0)
 - Approximate distance function
 - Boundary nodes are set to T = *distance_to_wall*
 - Other choices of BCs possible

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

- Choices of source term
 - In favor of *cell-quality*

$$f = f_{\min} + \frac{c - c_{\min}}{c_{\max} - c_{\min}} (f_{\max} - f_{\min})$$

where *c* is *cell-quality*

- In favor of specific grids

$$f = \begin{cases} f_{\text{max}} & \text{for prefered grids} \\ f_{\text{min}} & \text{for other grids} \end{cases}$$

- Other choices of source term possible

Boundary conditions for Poisson equations on each grid

Grid 1

Grid2

Source term for the Poisson problems in favor of cell-quality

Grid 1

Grid 2

Solution of Poisson problems

Grid 2 3D view of Poisson solution

Grid 1 and 2

Final mesh

3D view of Poisson solution

Comparison of Hole Cutting

16 airfoil-grids overlapping on a background grid

Comparison of Hole Cutting

Implicit Hole Cutting

Comparison of Hole Cutting

In favor of cell quality

In favor of airfoil grids

Elliptic Hole Cutting using different source terms

Consideration for Parallel

- T₁ and T₂ need to be compared at the same location (at same node from same grid)
- If we want to compare T_1 and T_2 on grid-1, we can:
 - Interpolate T₂ from grid-2 to grid-1; or
 - Solve for T₂ on grid-1

Consideration for Parallel

Interpolate T₂ from grid-2 to grid-1

- Every node of grid-1 in the overlapped region needs to be searched on grid-2
- Lots of communication in parallel implementation

Consideration for Parallel

Solve for T₂ on grid-1

 Only the nodes of grid-1 that are on boundaries of the overlapped region need to be searched on grid-2

"SimCenter" grids before hole cutting

"SimCenter" grids after elliptic hole cutting

Advantages of Elliptic Hole Cutting

- Mesh quality:
 - The "continuity" of cell selection is guaranteed by the smoothness of the Poisson solutions
- Automation:
 - User input is not necessary
 - Yet, user still have the freedom to influence cell selection process indirectly (through source terms, or boundary conditions) or directly (by modifying Poisson solution)
- Parallel:
 - Poisson solver can easily be parallel
 - Limited searching keeps communication cost down
- Flexibility
 - Approximated distance function
 - other choices possible

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
- Conclusion

Governing Equations

Weighted intergral form of compressible Navier-Stokes
 equations with Spalart-Allmaras turbulence model

$$\int_{\Omega} \varphi \left[\frac{\partial Q}{\partial t} + \nabla \cdot \left(\overline{\mathbf{F}}_{e} \left(Q \right) - \mathbf{F}_{v} \left(Q, \nabla Q \right) \right) - S \left(Q, \nabla Q \right) \right] d\Omega = 0$$

• Convective flux on dynamic grids

$$\overline{\mathbf{F}}_e = \mathbf{F}_e - \mathbf{V}_g Q$$

• SUPG used in defining weighting function

$$\varphi = [N] + [P]$$

• Utilizing integration by parts the weak form becomes $\frac{\partial}{\partial t} \int_{\Omega} N \mathbf{Q} d\Omega - \int_{\Omega} \nabla N \cdot (\overline{\mathbf{F}}_{e} - \mathbf{F}_{v}) d\Omega + \oint_{\Gamma} N (\overline{\mathbf{F}}_{e} - \mathbf{F}_{v}) \cdot \mathbf{n} d\Gamma$ Boundary terms $-\int_{\Omega} N S d\Omega + \frac{\partial}{\partial t} \int_{\Omega} [P] \mathbf{Q} d\Omega + \int_{\Omega} [P] (\nabla \cdot (\overline{\mathbf{F}}_{e} - \mathbf{F}_{v}) - S) d\Omega = 0$ SIMUCENTER THE UNIVERSITY of TENNESSEE at CHATTANOOGA

NATIONAL CENTER for COMPUTATIONAL ENGINEERING

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
- Conclusion

Overset Methodology

• Overset problems appear as boundary conditions

Example of overset problem of an airfoil

Discretization

 $\overline{\mathbf{F}}_{e} \cdot \mathbf{n} = \overline{\mathbf{F}}_{e}^{+} (\mathbf{Q}_{L}) \cdot \mathbf{n} + \overline{\mathbf{F}}_{e}^{-} (\mathbf{Q}_{R}) \cdot \mathbf{n} \text{ van Leer flux}$

$$\mathbf{F}_{v} \cdot \mathbf{n} = \frac{1}{2} \Big(\mathbf{F}_{v} \Big(\mathbf{Q}_{L}, \nabla \mathbf{Q}_{L} \Big) \cdot \mathbf{n} + \mathbf{F}_{v} \Big(\mathbf{Q}_{R}, \nabla \mathbf{Q}_{R} \Big) \cdot \mathbf{n} \Big)$$

Linearization

- · Jacobian matrix has two components stored separately
 - \tilde{A} Intra-grid dependency, its structure does not change
 - *O* Inter-grid dependency, its structure changes with dynamic grids

Solution Procedure

- Discrete-Newton relaxation to converge time-residual
 - Both intra-grid and inter-grid dependency are used, resulting in an implicit treatment of the overset boundaries
- GMRES with ILU(k) preconditioning to solve linear system
 - Preconditioner is modified for overset problems for improved convergence of GMRES

Original GMRES Preconditioner

- Jacobian matrix has large bandwidth due to O
 - Reordering would be expensive: not practical for parallel implementation

• ILU(k) only considers entries within a specified bandwidth (intra-grid): preconditioner may not be satisfactory

$$A_{pre} = LU = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} \approx \begin{bmatrix} \tilde{A}_1 \\ \tilde{A}_2 \end{bmatrix} \quad \begin{array}{c} O \text{ is completely} \\ ignored \end{bmatrix}$$

Modified GMRES Preconditioner

A modification for overset grids may be implemented as

$$A_{pre} = L\left(U + L^{-1}O_{U}\right)$$

$$= \begin{bmatrix} L_{1} \\ L_{2} \end{bmatrix} \begin{bmatrix} U_{1} & L_{1}^{-1}O_{12} \\ U_{2} \end{bmatrix} \approx \begin{bmatrix} \tilde{A}_{1} & O_{12} \\ \tilde{A}_{2} \end{bmatrix}$$

$$LU-decomposition of A_{pre} readily known implicitly$$

 O_{12} is considered

Modified GMRES Preconditioner

NATIONAL CENTER for COMPUTATIONAL ENGINEERING

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
 - Modified preconditioner
 - Manufactured solutions
 - Steady turbulent
 - Unsteady moving boundary
 - Relative motion between two bodies
- Adaptive overset
- Conclusion

Modified GMRES Preconditioners

Steady inviscid flow, P1 elements Free stream condition $M = 0.2, \alpha = 2^{\circ}$

CFL=100

One discrete-Newton step performed

Mesh used for comparison

Comparison of GMRES Preconditioners

1St modified version is used in current study

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
 - Modified preconditioner
 - Manufactured solutions
 - Steady turbulent
 - Unsteady moving boundary
 - Relative motion between two bodies
- Adaptive overset
- Conclusion

- The Method of Manufactured Solution (MMS) is a general procedure for generating nontrivial exact solutions to PDEs
- Accuracy of the SUPG overset scheme is assessed using MMS based on a comprehensive set of guidelines

- MMS for both inviscid and laminar (Re=100) equations are performed to assess accuracy
- The following trigonometric functions are used to derive forcing functions and boundary conditions

$$\begin{split} \rho &= \rho_o \left\{ 1 + 0.2 \cos[\pi(c_1 x - s_1 y)] + 0.2 \cos[\pi(c_1 x + s_1 y)] \right\} \\ u &= u_o \left\{ 1 + 0.2 \cos[\pi(c_2 x - s_2 y + 0.1)] + 0.2 \cos[\pi(c_2 x + s_2 y + 0.1)] \right\} \\ v &= v_o \left\{ 1 + 0.2 \cos[\pi(c_3 x - s_3 y - 0.1)] + 0.2 \cos[\pi(c_3 x + s_3 y + 0.1)] \right\} \\ T &= T_o \left\{ 1 + 0.2 \cos[\pi(c_4 x - s_4 y - 0.1)] + 0.2 \cos[\pi(c_4 x + s_4 y - 0.1)] \right\} \end{split}$$

- ρ_o, u_o, v_o, T_o correspond to the free stream condition of $M = 0.2, \alpha = 15^{\circ}$
- c_i, s_i correspond to cosine and sine of 0°, 40°, 80°, and 120°

Temperature on coarsest meshes, laminar, P3 elements

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
 - Modified preconditioner
 - Manufactured solutions
 - Steady turbulent
 - Unsteady moving boundary
 - Relative motion between two bodies
- Adaptive overset
- Conclusion

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

Steady Turbulent Flow

Steady Turbulent Flow

Grids used in simulations

Steady Turbulent Flow

X-velocity profile at x=0.24 and 0.32

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
 - Modified preconditioner
 - Manufactured solutions
 - Steady turbulent
 - Unsteady moving boundary
 - Sinusoidally oscillating airfoil
 - Sinusoidally pitching and plunging airfoil
 - Relative motion between two bodies
- Adaptive overset
- Conclusion

Sinusoidally Oscillating Airfoil

- Benchmark case for dynamic mesh code validation
- Free stream $M_{\infty} = 0.6, \alpha_{\infty} = 0^{\circ}$
- NACA0012 airfoil pitch about its quarter chord

 $\alpha(t) = \alpha_m + \alpha_o \sin(2kM_\infty t)$

where $\alpha_m = 2.89^\circ, \alpha_0 = 2.41^\circ, k = 0.0808$

Sinusoidally Oscillating Airfoil

- Inviscid. P1 elements •
- Multiple layers of overlap, grids generated a priori •
- Grid moves as a rigid body. Analytical grid velocities are used •
- For overset simulation, background grid is stationary, only • airfoil grid is moving

Sinusoidally Oscillating Airfoil

Time history of coefficient of lift

Sinusoidal Pitch and Plunge Airfoil

- Free stream $M_{\infty} = 0.4, \alpha_{\infty} = 0^{\circ}$
- NACA0012 Airfoil pitch about its quarter chord, and plunge

 $\begin{cases} \alpha(t) = \alpha_m + \alpha_o \sin(2kM_\infty t) \\ h(t) = h_0 \sin(kM_\infty t) \end{cases}$

where $\alpha_m = 0^\circ, \alpha_0 = 5^\circ, k = 0.0808, h_0 = 0.4c$, *c* is the chord length

Sinusoidal Pitch and Plunge Airfoil

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
 - Modified preconditioner
 - Manufactured solutions
 - Steady turbulent
 - Unsteady moving boundary
 - Relative motion between two bodies
- Adaptive overset
- Conclusion

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

Relative Motion Between Two Bodies

- Inviscid simulation
- Demonstration of dynamic hole cutting
- Free stream $M_{\infty} = 0.1, \alpha_{\infty} = 0^{\circ}$
- Airfoil is stationary. Triangle wedge moves upstream at M = 0.1
- Non-dimensional chord length = 1
- Non-dimensional time step = 0.05
- Modified IHC is used

Relative Motion Between Two Bodies

Grids (after hole cutting) and entropy contour, P2 elements

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
 - Adaptation methodology
 - Preliminary results
- Conclusion

Adaptation Methodology

- Ahrabi, B.R., Anderson, W.K., Newman III, J.C., "High-Order Finite-Element Method and Dynamic Adaptation for Two-Dimensional Laminar and Turbulent Navier-Stokes," 32nd AIAA Applied Aerodynamics Conference, June 2014, AIAA Paper 2014-2983.
 - Dynamic hp-adaptation
 - Adjoint-based (steady), and featured-based (steady & unsteady)
 - Weight function is continuous across cell interface (no need to calculate the flux)
 - Efficient handling of hanging nodes
 - Implemented simply by adding a static condensation step to every continuous Galerkin method
 - Discretization is conservative

THE UNIVERSITY of TENNESSEE at CHATTANOOGA

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
 - Adaptation methodology
 - Preliminary results
- Conclusion

No adaptation

Inviscid

M=0.2

Triangle Wedge Vortex Shedding

Inviscid M=0.2 P₁ element Feature based H-adaptation (refinement only)

With h-adaptation (refinement only)

Multiple Airfoils

Inviscid, steady M=0.2 P1 element

SimCenter NATIONAL CENTER for COMPUTATIONAL ENGINEERING

NATIONAL CENTER for COMPUTATIONAL ENGINEERING

Outline

- Hole cutting
- Governing equations
- Overset methodology
- Overset results
- Adaptive overset
- Conclusion

Conclusion

- Development of a novel hole cutting procedure: Elliptic Hole ۲ Cutting
- Development of modified preconditioners for overset grid • computations
- Demonstrated that the design order of accuracy of the method ulletis retained using the method of manufactured solutions
- Demonstrated the method for steady-turbulent and for ٠ dynamic moving boundary simulations
- First implementation of a high-order SUPG overset grid ۲ scheme
- Demonstrated the potential of using adaptation in overset • scheme
- Prototyping in 2D complete. Extension to 3D underway ۲

