A Time-Spectral Method for Relative Motion on Overset Grids

Joshua Leffell

Stanford University
US Army Aeroflightdynamics Directorate
Scott M. Murman
Thomas H. Pulliam
NASA Ames Research Center

Motivation

Overset Grid Technology (OVERFLOW)
Complex geometry
Efficient data structures
Versatile for moving-body configurations

Time-Spectral Method

Periodic flow \rightarrow steady in frequency domain Avoid time-accurate transient Few temporal DOF

Motivation

Overset Grid Technology (OVERFLOW)
Complex geometry
Efficient data structures
Versatile for moving-body configurations

Time-Spectral Method

Periodic flow \rightarrow steady in frequency domain Avoid time-accurate transient Few temporal DOF

Objective

Merge the two techniques in a general and consistent manner

Outline

The Time-Spectral Method
Hybrid Time-Spectral Scheme
OVERFLOW
Numerical Results
Summary \& Future Work

The Time-Spectral Method

Space-Time Domain

The Time-Spectral Method

Space-Time Domain
Local support in space (finite differences)

The Time-Spectral Method

Space-Time Domain
Local support in space (finite differences)

The Time-Spectral Method

Space-Time Domain
Infinite support in time (Fourier series)

The Time-Spectral Method

Fourier Collocation in Time - Problem Statement

Time-periodic PDE

$$
\frac{\partial}{\partial t} u(\mathbf{x}, t)+\mathcal{R}(u(\mathbf{x}, t))=0, \quad \mathbf{x} \in \Omega, \quad \text { s.t. } u(\mathbf{x}, t+T)=u(\mathbf{x}, t)
$$

Fourier series

$$
u(\mathbf{x}, t)=\sum_{k=-\infty}^{\infty} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t), \quad \phi_{k}(t)=e^{i \omega k t} \quad \longrightarrow \quad u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)
$$

Method of weighted residuals

$$
\begin{gathered}
\left(R_{N}, \psi_{j}\right)_{w}=\int_{0}^{T} w R_{N}(\mathbf{x}, t) \psi_{j} d t=0, \quad \mathbf{x} \in \Omega, \quad j \in\{0, \ldots, N-1\} \\
\psi_{j}=\delta\left(t-t_{j}\right), \quad w=1, \quad t_{j}=\frac{j T}{N} \\
R_{N}(\mathbf{x}, t)=\frac{\partial}{\partial t} u_{N}(\mathbf{x}, t)+\mathcal{R}\left(u_{N}(\mathbf{x}, t)\right), \quad \mathbf{x} \in \Omega
\end{gathered}
$$

The Time-Spectral Method

Fourier Collocation in Time - Problem Statement
Time-periodic PDE

$$
\frac{\partial}{\partial t} u(\mathbf{x}, t)+\mathcal{R}(u(\mathbf{x}, t))=0, \quad \mathbf{x} \in \Omega, \quad \text { s.t. } u(\mathbf{x}, t+T)=u(\mathbf{x}, t)
$$

Fourier series

$$
u(\mathbf{x}, t)=\sum_{k=-\infty}^{\infty} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t), \quad \phi_{k}(t)=e^{i \omega k t} \quad \longrightarrow \quad u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)
$$

Method of weighted residuals

$$
\mathrm{K} \text { modes } \longrightarrow N=2 \mathrm{~K}+1 \text { Samples }
$$

$$
\begin{gathered}
\left(R_{N}, \psi_{j}\right)_{w}=\int_{0}^{T} w R_{N}(\mathbf{x}, t) \psi_{j} d t=0, \quad \mathbf{x} \in \Omega, \quad j \in\{0, \ldots, N-1\} \\
\psi_{j}=\delta\left(t-t_{j}\right), \quad w=1, \quad t_{j}=\frac{j T}{N} \\
R_{N}(\mathbf{x}, t)=\frac{\partial}{\partial t} u_{N}(\mathbf{x}, t)+\mathcal{R}\left(u_{N}(\mathbf{x}, t)\right), \quad \mathbf{x} \in \Omega
\end{gathered}
$$

The Time-Spectral Method

Fourier Collocation in Time - Problem Statement
Time-periodic PDE

$$
\frac{\partial}{\partial t} u(\mathbf{x}, t)+\mathcal{R}(u(\mathbf{x}, t))=0, \quad \mathbf{x} \in \Omega, \quad \text { s.t. } u(\mathbf{x}, t+T)=u(\mathbf{x}, t)
$$

Fourier series

$$
u(\mathbf{x}, t)=\sum_{k=-\infty}^{\infty} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t), \quad \phi_{k}(t)=e^{i \omega k t} \quad \longrightarrow \quad u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)
$$

Method of weighted residuals

$$
\mathrm{K} \text { modes } \longrightarrow N=2 \mathrm{~K}+1 \text { Samples }
$$

$$
\begin{gathered}
\left(R_{N}, \psi_{j}\right)_{w}=\int_{0}^{T} w R_{N}(\mathbf{x}, t) \psi_{j} d t=0, \quad \mathbf{x} \in \Omega, \quad j \in\{0, \ldots, N-1\} \\
\psi_{j}=\delta\left(t-t_{j}\right), \quad w=1, \quad t_{j}=\frac{j T}{N}
\end{gathered}
$$

$$
R_{N}\left(\mathrm{x}, t_{j}\right)=\frac{\partial}{\partial t} u_{N}\left(\mathrm{x}, t_{j}\right)+\mathcal{R}\left(u_{N}\left(\mathrm{x}, t_{j}\right)\right)=0, \quad \mathrm{x} \in \Omega, \quad j \in\{0, \ldots, N-1\}
$$

The Time-Spectral Method

Fourier Collocation in Time - Differentiation Operator
Analytically differentiate Fourier series

$$
u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) e^{i \omega k t} \longrightarrow \frac{\partial}{\partial t} u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} i \omega k \tilde{u}_{k}(\mathbf{x}) e^{i \omega k t}
$$

Discrete Fourier Transform

$$
\tilde{u}_{k}(\mathbf{x})=\frac{1}{N} \sum_{j=0}^{N-1} u_{N}\left(\mathbf{x}, t_{j}\right) e^{-i \omega k t_{j}}
$$

Fourier interpolation differentiation operator

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{N}\left(\mathbf{x}, t_{j}\right) & =\sum_{n=0}^{N-1} u_{N}\left(\mathbf{x}, t_{n}\right) \sum_{k=-K}^{K} \frac{i \omega k}{N} e^{i \omega k\left(t_{j}-t_{n}\right)} \\
& =\sum_{n=0}^{N-1} d_{j n} u_{N}\left(\mathbf{x}, t_{n}\right)
\end{aligned}
$$

The Time-Spectral Method

Fourier Collocation in Time - Differentiation Operator

Analytically differentiate Fourier series

$$
u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) e^{i \omega k t} \longrightarrow \frac{\partial}{\partial t} u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} i \omega k \tilde{u}_{k}(\mathbf{x}) e^{i \omega k t}
$$

Discrete Fourier Transform

$$
\tilde{u}_{k}(\mathbf{x})=\frac{1}{N} \sum_{j=0}^{N-1} u_{N}\left(\mathbf{x}, t_{j}\right) e^{-i \omega k t_{j}}
$$

Fourier interpolation differentiation operator

$$
\begin{aligned}
\frac{\partial}{\partial t} u_{N}\left(\mathbf{x}, t_{j}\right) & =\sum_{n=0}^{N-1} u_{N}\left(\mathbf{x}, t_{n}\right) \sum_{k=-K}^{K} \frac{i \omega k}{N} e^{i \omega k\left(t_{j}-t_{n}\right)} \\
& =\sum_{n=0}^{N-1} d_{j n} u_{N}\left(\mathbf{x}, t_{n}\right) \\
\frac{\partial}{\partial t} \mathbf{u}_{N}(\mathbf{x}) & =\mathcal{D}_{N} \mathbf{u}_{N}(\mathbf{x}) \quad
\end{aligned} \quad \mathbf{u}_{N}(\mathbf{x})=\left\{u_{N}\left(\mathbf{x}, t_{0}\right), \ldots, u_{N}\left(\mathbf{x}, t_{N-1}\right)\right\}^{T} .
$$

The Time-Spectral Method

Fourier Collocation in Time

Semi-discrete form

$$
\frac{\partial}{\partial t} \mathbf{u}_{N}(\mathbf{x})+\mathcal{R}\left(\mathbf{u}_{N}(\mathbf{x})\right)=0, \quad \mathbf{x} \in \Omega
$$

Fully discrete form

$$
\mathcal{D}_{N} \mathbf{u}_{N}(\mathbf{x})+\mathcal{R}\left(\mathbf{u}_{N}(\mathbf{x})\right)=0, \quad \mathbf{x} \in \Omega
$$

Pseudotime integration

$$
\frac{\partial}{\partial \tau} \mathbf{u}_{N}(\mathbf{x})+\mathcal{D}_{N} \mathbf{u}_{N}(\mathbf{x})+\mathcal{R}\left(\mathbf{u}_{N}(\mathbf{x})\right)=0, \quad \mathbf{x} \in \Omega
$$

Interpolation/Reconstruction Postprocessing

$$
\tilde{u}_{k}(\mathbf{x})=\frac{1}{N} \sum_{j=0}^{N-1} u_{N}\left(\mathbf{x}, t_{j}\right) e^{-i \omega k t_{j}} \quad \longrightarrow \quad u_{N}(\mathbf{x}, t)=\sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)
$$

Outline

The Time-Spectral Method
Hybrid Time-Spectral Scheme

OVERFLOW

Numerical Results
Summary \& Future Work

Hybrid Time-Spectral Method

Rigid Motion

Constant blanking

Hybrid Time-Spectral Method

Relative Motion

Points in hole-cut regions have an incomplete set of time samples

Dynamic blanking

Hybrid Time-Spectral Method

Proposed Approach

Oscillating Piston Example

- Node a never covered by piston
- Node b covered once per period
- Node c covered twice per period

[^0] Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Hybrid Time-Spectral Method

Proposed Approach

Three primary approaches:

1. Global expansion of the solution
2. Local expansion of the solution
3. Mixed approach

Restricted to uniform time samples

Oscillating Piston Example

- Node a never covered by piston
- Node b covered once per period
- Node c covered twice per period

[^1] Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Hybrid Time-Spectral Method

Proposed Approach

Three primary approaches:

1. Global expansion of the solution
2. Local expansion of the solution
3. Mixed approach

Restricted to uniform time samples

Oscillating Piston Example

- Node a never covered by piston
- Node b covered once per period
- Node c covered twice per period

[^2] Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Hybrid Time-Spectral Method

Local Expansion of the Solution - Bounded Interval
Barycentric Rational Interpolation

$$
\begin{aligned}
u_{P}(t) & =\sum_{k=0}^{N} u_{P}\left(t_{k}\right) \phi_{k}(t) \\
\phi_{k}(t) & =\frac{\frac{w_{k}}{t-t_{k}}}{\sum_{j=0}^{N} \frac{w_{j}}{t-t_{j}}}
\end{aligned}
$$

Sample basis functions

[^3] Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Hybrid Time-Spectral Method

Local Expansion of the Solution - Bounded Interval

Barycentric Rational Interpolation

$$
\begin{aligned}
& u_{P}(t)=\sum_{k=0}^{N} u_{P}\left(t_{k}\right) \phi_{k}(t) \\
& \phi_{k}(t)=\frac{\frac{w_{k}}{t-t_{k}}}{\sum_{j=0}^{N} \frac{w_{j}}{t-t_{j}}}
\end{aligned}
$$

Analytic differentiation operator

$$
\mathcal{D}_{j k}= \begin{cases}\frac{w_{k}}{w_{j}} \frac{1}{\left(t_{j}-t_{k}\right)} & \text { if } j \neq k \\ -\sum_{i=0, i \neq k}^{N} \mathcal{D}_{j i} & \text { if } j=k\end{cases}
$$

[^4] Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Hybrid Time-Spectral Method

Differentiation Properties

Outline

The Time-Spectral Method
Hybrid Time-Spectral Scheme
OVERFLOW
Numerical Results
Summary \& Future Work

OVERFLOW

Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference

$$
\frac{Q^{s+1}-Q^{s}}{\Delta \tau}+\frac{3 Q^{s+1}-4 Q^{n}+Q^{n-1}}{2 \Delta t}+\left[\delta_{x}^{L} \mathcal{A}+\delta_{y}^{L} \mathcal{B}\right] \Delta Q=-\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}\right]
$$

Delta form, $\Delta Q=Q^{s+1}-Q^{s}$

$$
\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}+\Delta \tau \delta_{y}^{L} \mathcal{B}+\Delta \tau \mathcal{D}_{N}\right] \Delta Q=-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]
$$

Approximate factorization

$$
\begin{aligned}
{\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}\right]\left[I+\Delta \tau \delta_{y}^{L} \mathcal{B}\right]\left[I+\Delta \tau \mathcal{D}_{N}\right] \Delta Q } & =-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]+\mathcal{O}\left(\Delta \tau^{2}\right) \\
\mathcal{L}_{x} \mathcal{L}_{y} \mathcal{L}_{t} \Delta Q & =\mathcal{R}\left(Q^{s}\right)
\end{aligned}
$$

$N_{S D}+1$ direct inversions

$$
\begin{aligned}
& \mathcal{L}_{x} \Delta \bar{Q}=\mathcal{R}\left(Q^{s}\right) \\
& \mathcal{L}_{y} \Delta \bar{Q}=\Delta \bar{Q} \\
& \mathcal{L}_{t} \Delta Q=\Delta \overline{\bar{Q}}
\end{aligned}
$$

OVERFLOW

Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference \longrightarrow spectrally-accurate global operator

$$
\begin{aligned}
& \frac{Q^{s+1}-Q^{s}}{\Delta \tau}+\frac{3 Q^{s+1}-4 Q^{n}+Q^{n-1}}{2 \Delta t}+\left[\delta_{x}^{L} \mathcal{A}+\delta_{y}^{L} \mathcal{B}\right] \Delta Q=-\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}\right] \\
& \frac{Q^{s+1}-Q^{s}}{\Delta \tau}+\quad \mathcal{D}_{N} Q^{s+1} \\
& +\left[\delta_{x}^{L} \mathcal{A}+\delta_{y}^{L} \mathcal{B}\right] \Delta Q=-\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}\right]
\end{aligned}
$$

Delta form, $\Delta Q=Q^{s+1}-Q^{s}$

$$
\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}+\Delta \tau \delta_{y}^{L} \mathcal{B}+\Delta \tau \mathcal{D}_{N}\right] \Delta Q=-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]
$$

Approximate factorization

$$
\begin{aligned}
{\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}\right]\left[I+\Delta \tau \delta_{y}^{L} \mathcal{B}\right]\left[I+\Delta \tau \mathcal{D}_{N}\right] \Delta Q } & =-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]+\mathcal{O}\left(\Delta \tau^{2}\right) \\
\mathcal{L}_{x} \mathcal{L}_{y} \mathcal{L}_{t} \Delta Q & =\mathcal{R}\left(Q^{s}\right)
\end{aligned}
$$

$N_{S D}+1$ direct inversions

$$
\begin{aligned}
\mathcal{L}_{x} \Delta \bar{Q} & =\mathcal{R}\left(Q^{s}\right) \\
\mathcal{L}_{y} \Delta \overline{\bar{Q}} & =\Delta \bar{Q} \\
\mathcal{L}_{t} \Delta Q & =\Delta \overline{\bar{Q}}
\end{aligned}
$$

OVERFLOW

Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference \longrightarrow spectrally-accurate global operator

$$
\begin{aligned}
& \frac{Q^{s+1}-Q^{s}}{\Delta \tau}+\frac{3 Q^{s+1}-4 Q^{n}+Q^{n-1}}{2 \Delta t}+\left[\delta_{x}^{L} \mathcal{A}+\delta_{y}^{L} \mathcal{B}\right] \Delta Q=-\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}\right] \\
& \frac{Q^{s+1}-Q^{s}}{\Delta \tau}+\quad \mathcal{D}_{N} Q^{s+1} \\
& +\left[\delta_{x}^{L} \mathcal{A}+\delta_{y}^{L} \mathcal{B}\right] \Delta Q=-\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}\right]
\end{aligned}
$$

Delta form, $\Delta Q=Q^{s+1}-Q^{s}$

$$
\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}+\Delta \tau \delta_{y}^{L} \mathcal{B}+\Delta \tau \mathcal{D}_{N}\right] \Delta Q=-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]
$$

Approximate factorization

$$
\begin{array}{rlrl}
{\left[I+\Delta \tau \delta_{x}^{L} \mathcal{A}\right]\left[I+\Delta \tau \delta_{y}^{L} \mathcal{B}\right]\left[I+\Delta \tau \mathcal{D}_{N}\right] \Delta Q} & =-\Delta \tau\left[\delta_{x}^{R} F^{s}+\delta_{y}^{R} G^{s}+\mathcal{D}_{N} Q^{s}\right]+\mathcal{O}\left(\Delta \tau^{2}\right) \\
& \mathcal{L}_{x} \mathcal{L}_{y} \mathcal{L}_{t} \Delta Q & =\mathcal{R}\left(Q^{s}\right) & \tilde{\mathcal{R}} \leftarrow F F T(\Delta \overline{\bar{Q}}) \\
\text { ct inversions } & \leftarrow \mathcal{L} & \\
\mathcal{L}_{x} \Delta \bar{Q} & =\mathcal{R}\left(Q^{s}\right) \\
\mathcal{L}_{y} \Delta \bar{Q} & =\Delta \bar{Q} \\
\mathcal{L}_{t} \Delta Q & =\Delta \overline{\bar{Q}} & \Delta \tilde{Q}_{k} \leftarrow \frac{\tilde{\mathcal{R}}}{1+\Delta \tau i \omega k}, \quad \forall k \\
\Delta Q \leftarrow \operatorname{IFFT}(\Delta \tilde{Q})
\end{array}
$$

$N_{S D}+1$ direct inversions

OVERFLOW

High-level Comparison
Initialize Flowfield

BC/MPI

RHS - Evaluate $R(\mathbf{Q})$
\downarrow
LHS - Solve for $\Delta \mathrm{Q}$
$\left[I+\Delta_{\tau} A_{i}\right]\left[I+\Delta_{\tau} A_{j}\right]\left[I+\Delta_{\tau} A_{k}\right] \Delta \mathbf{Q}=R(\mathbf{Q})$

Update Solution
$\mathbf{Q}=\mathbf{Q}+\Delta \mathbf{Q}$

OVERFLOW

High-level Comparison

OVERFLOW

High-level Comparison

Outline

The Time-Spectral Method
Hybrid Time-Spectral Scheme
OVERFLOW
Numerical Results
Summary \& Future Work

Two-Dimensional Oscillating Airfoils

Laminar Plunging NACA 0012 airfoil at $M_{\infty}=0.2, R e=1850$
Experimental

Drag Producing Case, St $=0.288$

$$
k=3.6, h=0.08
$$

Experimental

Jones et al. ['98]
Thrust Producing Case, $S t=0.6$

$$
k=6.0, h=0.1
$$

Two-Dimensional Oscillating Airfoils

Laminar Plunging NACA 0012 airfoil at $M_{\infty}=0.2, R e=1850$
Drag Producing Case, $S t=0.288, k=3.6, h=0.08$

Rigid Motion

Modes/Samples

$$
K=1, N=3
$$

$$
K=2, N=5
$$

$$
K=4, N=9
$$

$$
K=8, N=17
$$

$$
K=16, N=33
$$

Relative Motion

Two-Dimensional Oscillating Airfoils

Laminar Plunging NACA 0012 airfoil at $M_{\infty}=0.2, R e=1850$
Drag Producing Case, St $=0.288, k=3.6, h=0.08$

- Time Accurate
- Relative Motion
- Rigid Motion

 i^{∇}

Two-Dimensional Oscillating Airfoils

Laminar Plunging NACA 0012 airfoil at $M_{\infty}=0.2, R e=1850$
Thrust Producing Case, St $=0.6, k=6.0, h=0.1$

$$
K=1, N=3
$$

$=(2949 \% 6$

$$
K=2, N=5
$$

$$
K=4, N=9
$$

$$
K=8, N=17
$$

Two-Dimensional Oscillating Airfoils

Laminar Plunging NACA 0012 airfoil at $M_{\infty}=0.2, R e=1850$
Thrust Producing Case, St $=0.6, k=6.0, h=0.1$

Time Accurate

- Relative Motion
- Rigid Motion

 J

Three-Dimensional V22 TRAM

Hover $-M_{t i p}=0.625, R e=2.1 \times 10^{6}, 14$ degree collective
3 blades $\times 2 \mathrm{M}$ nodes per blade 21M off-body nodes
27M total nodes

All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer

Two-Dimensional Oscillating Airfoils

Inviscid Plunging NACA 0012 airfoil at $M_{\infty}=0.5$

Rigid Motion

Relative Motion

Two-Dimensional Oscillating Airfoils

Inviscid Plunging NACA 0012 airfoil at $M_{\infty}=0.5$

- Near-Body Grid - Off-Body Grid

Rigid Motion

Relative Motion

Two-Dimensional Oscillating Airfoils

Inviscid Plunging NACA 0012 airfoil at $M_{\infty}=0.5$

Rigid Motion

Three-Dimensional V22 TRAM

Hover $-M_{t i p}=0.625, R e=2.1 \times 10^{6}, 14$ degree collective

Rigid Motion

Relative Motion
len

Three-Dimensional V22 TRAM

Hover $-M_{t i p}=0.625, R e=2.1 \times 10^{6}, 14$ degree collective
Vorticity Magnitude

Time Accurate

Time Spectral

Single harmonic, $N=3$

Three-Dimensional V22 TRAM

Hover - $M_{\text {tip }}=0.625, R e=2.1 \times 10^{6}, 14$ degree collective
Vorticity Magnitude

Time Accurate
Time Spectral

Single harmonic, $N=3$

Three-Dimensional V22 TRAM

Forward Flight - Advance ratio, $\mu=0.2, M_{t i p}=0.625, R e=2.1 \times 10^{6}$

$$
\Psi=270^{\circ}
$$

$$
\theta(\Psi)=\theta_{0}+\theta_{c} \cos (\Psi)+\theta_{s} \sin (\Psi)
$$

$$
\theta_{0}=10.0^{\circ}, \quad \theta_{c}=3.0^{\circ}, \quad \theta_{s}=-5.0^{\circ}
$$

Three-Dimensional V22 TRAM

Forward Flight - Advance ratio, $\mu=0.2, M_{\text {tip }}=0.625, R e=2.1 \times 10^{6}$
Convergence of Thrust Coefficient

$\mathrm{N}=11$

Three-Dimensional V22 TRAM

Forward Flight - Advance ratio, $\mu=0.2, M_{\text {tip }}=0.625, R e=2.1 \times 10^{6}$
Convergence of Thrust Coefficient

$\mathrm{N}=21$

Three-Dimensional V22 TRAM

Forward Flight - Advance ratio, $\mu=0.2, M_{\text {tip }}=0.625, R e=2.1 \times 10^{6}$
Convergence of Thrust Coefficient

$$
N=31
$$

Three-Dimensional V22 TRAM

Forward Flight - Advance ratio, $\mu=0.2, M_{t i p}=0.625, R e=2.1 \times 10^{6}$
$N=11$
$N=21$
$N=31$

Time Accurate, $N=1440$

Future Work

- Space-time multigird
- Parallel in time for periodic problems (e.g. hover or straight \& level forward flight)
- Parallel in time for non-periodic problems

Future Work

- Space-time multigird
- Parallel in time for periodic problems (e.g. hover or straight \& level forward flight)
- Parallel in time for non-periodic problems

Future Work

- Space-time multigird
- Parallel in time for periodic problems (e.g. hover or straight \& level forward flight)
- Parallel in time for non-periodic problems

Future Work

- Space-time multigird
- Parallel in time for periodic problems (e.g. hover or straight \& level forward flight)
- Parallel in time for non-periodic problems

Acknowledgements

US Army Aeroflightdynamics Directorate for financial \& technical support

NASA Advanced Supercomputing (NAS) Division for computational resources \& technical support

[^0]: * Leffell, J. I., Murman, S. M., and Pulliam, T. H. , "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013

[^1]: * Leffell, J. I., Murman, S. M., and Pulliam, T. H. , "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013

[^2]: * Leffell, J. I., Murman, S. M., and Pulliam, T. H. , "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013

[^3]: * Leffell, J. I., Murman, S. M., and Pulliam, T. H. , "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013

[^4]: * Leffell, J. I., Murman, S. M., and Pulliam, T. H. , "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013

