A Time-Spectral Method for Relative Motion on Overset Grids

Joshua Leffell Stanford University US Army Aeroflightdynamics Directorate

Scott M. Murman Thomas H. Pulliam NASA Ames Research Center

12th Symposium on Overset Composite Grids, Georgia Institute of Technology, October 9, 2014

Motivation

Overset Grid Technology (OVERFLOW) Complex geometry Efficient data structures Versatile for moving-body configurations

Time-Spectral Method Periodic flow → steady in frequency domain Avoid time-accurate transient Few temporal DOF

V22 in Hover, Neal Chaderjian, NASA Ames Research Center

Motivation

Overset Grid Technology (OVERFLOW) Complex geometry Efficient data structures Versatile for moving-body configurations

Time-Spectral Method Periodic flow → steady in frequency domain Avoid time-accurate transient Few temporal DOF

Objective Merge the two techniques in a general and consistent manner

V22 in Hover, Neal Chaderjian, NASA Ames Research Center

Outline

The Time-Spectral Method Hybrid Time-Spectral Scheme OVERFLOW Numerical Results Summary & Future Work

Local support in space (finite differences)

Local support in space (finite differences)

Infinite support in time (Fourier series)

The Time-Spectral Method Fourier Collocation in Time - Problem Statement Time-periodic PDE

 $\frac{\partial}{\partial t}u\left(\mathbf{x},t\right) + \mathcal{R}\left(u\left(\mathbf{x},t\right)\right) = 0, \quad \mathbf{x} \in \Omega,$

Fourier series

$$u(\mathbf{x},t) = \sum_{k=-\infty}^{\infty} \tilde{u}_k(\mathbf{x}) \phi_k(t), \quad \phi_k(t) = e^{i\omega kt}$$

Method of weighted residuals

$$(R_N, \psi_j)_w = \int_0^T w R_N (\mathbf{x}, t) \,\psi_j \, dt = 0,$$

$$\psi_j = \delta \left(t - t_j \right), \quad w =$$

$$R_{N}(\mathbf{x},t) = \frac{\partial}{\partial t} u_{N}(\mathbf{x},t) + \mathcal{R}(u_{N}(\mathbf{x},t)), \quad \mathbf{x} \in \Omega$$

$$\mathbf{2}, \quad \text{s.t.} \ u\left(\mathbf{x}, t+T\right) = u\left(\mathbf{x}, t\right)$$

$$u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)$$

$$\mathbf{x} \in \Omega, \quad j \in \{0, \dots, N-1\}$$

= 1,
$$t_j = \frac{jT}{N}$$

The Time-Spectral Method Fourier Collocation in Time - Problem Statement Time-periodic PDE

 $\frac{\partial}{\partial t}u\left(\mathbf{x},t\right) + \mathcal{R}\left(u\left(\mathbf{x},t\right)\right) = 0, \quad \mathbf{x} \in \Omega,$

Fourier series

$$u(\mathbf{x},t) = \sum_{k=-\infty}^{\infty} \tilde{u}_k(\mathbf{x}) \phi_k(t), \quad \phi_k(t) = e^{i\omega kt}$$

Method of weighted residuals

$$(R_N, \psi_j)_w = \int_0^T w R_N (\mathbf{x}, t) \,\psi_j \, dt = 0,$$

$$\psi_j = \delta \left(t - t_j \right), \quad w =$$

$$R_{N}(\mathbf{x},t) = \frac{\partial}{\partial t} u_{N}(\mathbf{x},t) + \mathcal{R}(u_{N}(\mathbf{x},t)), \quad \mathbf{x} \in \Omega$$

$$\mathbf{2}, \quad \text{s.t.} \ u\left(\mathbf{x}, t+T\right) = u\left(\mathbf{x}, t\right)$$

$$u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)$$

K modes \longrightarrow N = 2K + 1 Samples

$$\mathbf{x} \in \Omega, \quad j \in \{0, \dots, N-1\}$$

= 1,
$$t_j = \frac{jT}{N}$$

The Time-Spectral Method Fourier Collocation in Time - Problem Statement Time-periodic PDE

 $\frac{\partial}{\partial t}u\left(\mathbf{x},t\right) + \mathcal{R}\left(u\left(\mathbf{x},t\right)\right) = 0, \quad \mathbf{x} \in \Omega,$

Fourier series

$$u(\mathbf{x},t) = \sum_{k=-\infty}^{\infty} \tilde{u}_k(\mathbf{x}) \phi_k(t), \quad \phi_k(t) = e^{i\omega kt}$$

Method of weighted residuals

$$(R_N, \psi_j)_w = \int_0^T w R_N (\mathbf{x}, t) \psi_j dt = 0,$$

$$\psi_j = \delta (t - t_j), \quad w =$$

$$R_{N}\left(\mathbf{x}, t_{j}\right) = \frac{\partial}{\partial t} u_{N}\left(\mathbf{x}, t_{j}\right) + \mathcal{R}\left(u_{N}\left(\mathbf{x}, t_{j}\right)\right) =$$

$$\mathbf{2}, \quad \text{s.t.} \ u\left(\mathbf{x}, t+T\right) = u\left(\mathbf{x}, t\right)$$

$$u_N(\mathbf{x}, t) = \sum_{k=-K}^{K} \tilde{u}_k(\mathbf{x}) \phi_k(t)$$

K modes — N = 2K + 1 Sample

$$\mathbf{x} \in \Omega, \quad j \in \{0, \dots, N-1\}$$

= 1,
$$t_j = \frac{jT}{N}$$

 $= 0, \quad \mathbf{x} \in \Omega, \quad j \in \{0, \dots, N-1\}$

The Time-Spectral Method Fourier Collocation in Time - Differentiation Operator

Analytically differentiate Fourier series

$$u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) e^{i\omega kt} \longrightarrow \frac{\partial}{\partial t} u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} i\omega k \tilde{u}_{k}(\mathbf{x}) e^{i\omega kt}$$

Discrete Fourier Transform

$$\tilde{u}_k(\mathbf{x}) = \frac{1}{N} \sum_{j=0}^{N-1} u_N(\mathbf{x}, t_j) e^{-t}$$

Fourier interpolation differentiation operator

$$\frac{\partial}{\partial t} u_N \left(\mathbf{x}, t_j \right) = \sum_{n=0}^{N-1} u_N \left(\mathbf{x}, t_n \right) \sum_{k=-K}^{K} \frac{i\omega k}{N} e^{i\omega k(t_j - t_n)}$$
$$= \sum_{n=0}^{N-1} d_{jn} u_N \left(\mathbf{x}, t_n \right)$$

 $i\omega kt_j$

The Time-Spectral Method Fourier Collocation in Time - Differentiation Operator

Analytically differentiate Fourier series

$$u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) e^{i\omega kt} \longrightarrow \frac{\partial}{\partial t} u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} i\omega k \tilde{u}_{k}(\mathbf{x}) e^{i\omega kt}$$

Discrete Fourier Transform

$$\tilde{u}_k(\mathbf{x}) = \frac{1}{N} \sum_{j=0}^{N-1} u_N(\mathbf{x}, t_j) e^{-t}$$

Fourier interpolation differentiation operator

 $\cdot i\omega kt_j$

The Time-Spectral Method Fourier Collocation in Time

Semi-discrete form

Fully discrete form

 $\frac{\partial}{\partial t}\mathbf{u}_{N}\left(\mathbf{x}\right)+\mathcal{R}\left(\mathbf{u}_{N}\left(\mathbf{x}\right)\right)$

 $\mathcal{D}_{N}\mathbf{u}_{N}\left(\mathbf{x}
ight)+\mathcal{R}\left(\mathbf{u}_{N}\left(\mathbf{x}
ight)
ight)$

Pseudotime integration

 $\frac{\partial}{\partial \tau} \mathbf{u}_{N} \left(\mathbf{x} \right) + \mathcal{D}_{N} \mathbf{u}_{N} \left(\mathbf{x} \right) + \mathcal{T}$

Interpolation/Reconstruction Postprocessing

$$\tilde{u}_k(\mathbf{x}) = \frac{1}{N} \sum_{j=0}^{N-1} u_N(\mathbf{x}, t_j) e^{-i\omega k t_j}$$

$$\mathbf{x})) = 0, \quad \mathbf{x} \in \Omega$$

$$\mathbf{x})) = 0, \quad \mathbf{x} \in \Omega$$

$$\mathcal{R}\left(\mathbf{u}_{N}\left(\mathbf{x}\right)\right)=0, \quad \mathbf{x}\in\Omega$$

$$u_{N}(\mathbf{x},t) = \sum_{k=-K}^{K} \tilde{u}_{k}(\mathbf{x}) \phi_{k}(t)$$

Outline

The Time-Spectral Method Hybrid Time-Spectral Scheme OVERFLOW Numerical Results Summary & Future Work

Hybrid Time-Spectral Method Rigid Motion

 $\rightarrow x$

Constant blanking

Hybrid Time-Spectral Method Relative Motion

Points in hole-cut regions have an incomplete set of time samples

 $t \rightarrow x$

Dynamic blanking

Hybrid Time-Spectral Method Proposed Approach

Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Oscillating Piston Example

- Node a never covered by piston
- Node **b** covered once per period

1	1
Т	1

Hybrid Time-Spectral Method Proposed Approach

Three primary approaches:

- 1. Global expansion of the solution
- 2. Local expansion of the solution

0.8 1
 * Leffell, J. I., Murman, S. M., and Pulliam, T. H., "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013
 Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Oscillating Piston Example

- Node a never covered by piston
- Node **b** covered once per period
- Node c covered twice per period

 t_1

Hybrid Time-Spectral Method Proposed Approach

Three primary approaches:

- 1. Global expansion of the solution
- 2. Local expansion of the solution

0.8 1
 * Leffell, J. I., Murman, S. M., and Pulliam, T. H., "An Extension of the Time-Spectral Method to Overset Solvers," AIAA Paper 0637, Grapevine, Texas, January 2013
 Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

Oscillating Piston Example

- Node a never covered by piston
- Node **b** covered once per period
- Node c covered twice per period

 t_1

+/T

Hybrid Time-Spectral Method Local Expansion of the Solution - Bounded Interva $_{0.58}$

Barycentric Rational Interpolation

$$u_P(t) = \sum_{k=0}^{N} u_P(t_k) \phi_k(t)$$
$$\phi_k(t) = \frac{\frac{w_k}{t - t_k}}{\sum_{j=0}^{N} \frac{w_j}{t - t_j}}$$

Analytic differentiation operator

$$\mathcal{D}_{jk} = \begin{cases} \frac{w_k}{w_j} \frac{1}{(t_j - t_k)} & \text{if } j \neq k \\ -\sum_{i=0, i \neq k}^{N} \mathcal{D}_{ji} & \text{if } j = k \end{cases}$$

Leffell, J. I., "An Overset Time-Spectral Method for Relative Motion", PhD Thesis, Stanford University, June 2014

+/T

Hybrid Time-Spectral Method

Differentiation Properties

Outline

The Time-Spectral Method Hybrid Time-Spectral Scheme OVERFLOW Numerical Results Summary & Future Work

OVERFLOW Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference

$$\frac{Q^{s+1} - Q^s}{\Delta \tau} + \frac{3Q^{s+1} - 4Q^n + Q^{n-1}}{2\Delta t} + \left[\delta_x^L \mathcal{A} + \delta_y^L \mathcal{B}\right] \Delta Q = -\left[\delta_x^R F^s + \delta_y^R G^s\right]$$

Delta form, $\Delta Q = Q^{s+1} - Q^s$ $\left[I + \Delta \tau \delta_x^L \mathcal{A} + \Delta \tau \delta_y^L \mathcal{B} + \Delta \tau \mathcal{D}_N\right] \Delta Q$

Approximate factorization

$$\begin{bmatrix} I + \Delta \tau \delta_x^L \mathcal{A} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \delta_y^L \mathcal{B} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \mathcal{D}_N \end{bmatrix} \Delta Q = -\Delta \tau \begin{bmatrix} \delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s \end{bmatrix} + \mathcal{O} \left(\Delta \tau^2 \right)$$
$$\mathcal{L}_x \mathcal{L}_y \mathcal{L}_t \Delta Q = \mathcal{R} \left(Q^s \right)$$

 N_{SD} + 1 direct inversions

$$\mathcal{L}_y \Delta$$

$$Q = -\Delta\tau \left[\delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s\right]$$

 $\mathcal{L}_x \Delta \bar{Q} = \mathcal{R}\left(Q^s\right)$ $\Delta \bar{\bar{Q}} = \Delta \bar{Q}$ $\mathcal{L}_t \Delta Q = \Delta \bar{\bar{Q}}$

OVERFLOW Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference ——— spectrally-accurate global operator

$$\frac{Q^{s+1} - Q^s}{\Delta \tau} + \frac{3Q^{s+1} - 4Q^n + Q^{n-1}}{2\Delta t} + \left[\delta_x^L \mathcal{A} + \delta_y^L \mathcal{B}\right] \Delta Q = -\left[\delta_x^R F^s + \delta_y^R G^s\right]$$
$$\frac{Q^{s+1} - Q^s}{\Delta \tau} + \mathcal{D}_N Q^{s+1} + \left[\delta_x^L \mathcal{A} + \delta_y^L \mathcal{B}\right] \Delta Q = -\left[\delta_x^R F^s + \delta_y^R G^s\right]$$

Delta form, $\Delta Q = Q^{s+1} - Q^s$

$$\left[I + \Delta \tau \delta_x^L \mathcal{A} + \Delta \tau \delta_y^L \mathcal{B} + \Delta \tau \mathcal{D}_N\right] \Delta Q = -\Delta \tau \left[\delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s\right]$$

Approximate factorization

$$\begin{bmatrix} I + \Delta \tau \delta_x^L \mathcal{A} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \delta_y^L \mathcal{B} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \mathcal{D}_N \end{bmatrix} \Delta Q = -\Delta \tau \begin{bmatrix} \delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s \end{bmatrix} + \mathcal{O} \left(\Delta \tau^2 \right)$$
$$\mathcal{L}_x \mathcal{L}_y \mathcal{L}_t \Delta Q = \mathcal{R} \left(Q^s \right)$$

 N_{SD} + 1 direct inversions

 $\mathcal{L}_x \Delta \bar{Q} = \mathcal{R}\left(Q^s\right)$ $\mathcal{L}_y \Delta \bar{\bar{Q}} = \Delta \bar{Q}$ $\mathcal{L}_t \Delta Q = \Delta \bar{\bar{Q}}$

OVERFLOW Augmented Time-Spectral Flow Solver

Time-derivative: finite-difference ——— spectrally-accurate global operator

$$\frac{Q^{s+1} - Q^s}{\Delta \tau} + \frac{3Q^{s+1} - 4Q^n + Q^{n-1}}{2\Delta t} + \left[\delta_x^L \mathcal{A} + \delta_y^L \mathcal{B}\right] \Delta Q = -\left[\delta_x^R F^s + \delta_y^R G^s\right]$$
$$\frac{Q^{s+1} - Q^s}{\Delta \tau} + \mathcal{D}_N Q^{s+1} + \left[\delta_x^L \mathcal{A} + \delta_y^L \mathcal{B}\right] \Delta Q = -\left[\delta_x^R F^s + \delta_y^R G^s\right]$$

Delta form, $\Delta Q = Q^{s+1} - Q^s$

$$\left[I + \Delta \tau \delta_x^L \mathcal{A} + \Delta \tau \delta_y^L \mathcal{B} + \Delta \tau \mathcal{D}_N\right] \Delta Q = -\Delta \tau \left[\delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s\right]$$

Approximate factorization

$$\begin{bmatrix} I + \Delta \tau \delta_x^L \mathcal{A} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \delta_y^L \mathcal{B} \end{bmatrix} \begin{bmatrix} I + \Delta \tau \mathcal{D}_N \end{bmatrix} \Delta Q = -\Delta \tau \begin{bmatrix} \delta_x^R F^s + \delta_y^R G^s + \mathcal{D}_N Q^s \end{bmatrix} + \mathcal{O} \left(\Delta \tau^2 \right)$$
$$\mathcal{L}_x \mathcal{L}_y \mathcal{L}_t \Delta Q = \mathcal{R} \left(Q^s \right)$$
$$\tilde{\mathcal{P}} \leftarrow FF$$

N_{SD} + 1 direct inversions

 $\mathcal{L}_x \Delta \bar{Q} = \mathcal{R}\left(Q^s\right)$ $\mathcal{L}_y \Delta \bar{\bar{Q}} = \Delta \bar{Q}$ $\mathcal{L}_t \Delta Q = \Delta \bar{\bar{Q}}$

$$\begin{split} \tilde{\mathcal{R}} &\leftarrow FFT\left(\Delta\bar{\bar{Q}}\right) \\ \Delta \tilde{Q}_k \leftarrow \frac{\tilde{\mathcal{R}}}{1 + \Delta\tau i\omega k}, \quad \forall \\ \Delta Q &\leftarrow IFFT\left(\Delta\bar{Q}\right) \end{split}$$

OVERFLOW High-level Comparison

OVERFLOW High-level Comparison Initialize Flowfield BC/MPI RHS - Evaluate $R(\mathbf{Q})$: LHS - Solve for $\Delta \mathbf{Q}$ $[I + \Delta \tau A_i][I + \Delta \tau A_j][I + \Delta \tau A_k]\Delta \mathbf{Q} = R(\mathbf{Q})$ Update Solution $\mathbf{Q} = \mathbf{Q} + \Delta \mathbf{Q}$

Outline

The Time-Spectral Method Hybrid Time-Spectral Scheme OVERFLOW

Numerical Results

Summary & Future Work

Two-Dimensional Oscillating Airfoils Laminar Plunging NACA 0012 airfoil at $M_{\infty} = 0.2$, Re = 1850

Experimental

Jones et al. ['98]

Experimental

Jones et al. ['98]

Thrust Producing Case, St = 0.6k = 6.0, h = 0.1

Drag Producing Case, St = 0.288k = 3.6, h = 0.08

No Spectral Vanishing Viscosity Required for either Rigid or Relative Motion

 $c_d imes 10^2$

No Spectral Vanishing Viscosity Required for either Rigid or Relative Motion

Spectral Vanishing Viscosity Required for both Rigid and Relative Motion

 10^{2}

 \times

 c_d

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

Two-Dimensional Oscillating Airfoils Inviscid Plunging NACA 0012 airfoil at $M_{\infty} = 0.5$

 10^{4}

— TA --K = 2--K = 4--K = 80.50.10.20.3 0.40.70.50.60.80.9 $\left(\right)$ t/T 10^{1}

Three-Dimensional V22 TRAM Hover - $M_{tip} = 0.625$, $Re = 2.1 \times 10^6$, 14 degree collective

Rigid Motion

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

Three-Dimensional V22 TRAM Hover - $M_{tip} = 0.625$, $Re = 2.1 \times 10^6$, 14 degree collective Vorticity Magnitude

Time Accurate

Time Spectral

Single harmonic, N = 3

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

Three-Dimensional V22 TRAM Hover - $M_{tip} = 0.625$, $Re = 2.1 \times 10^6$, 14 degree collective Vorticity Magnitude

Time Accurate

Single harmonic, N = 3

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

 $\theta_0 = 10.0^{\circ}, \quad \theta_c = 3.0^{\circ}, \quad \theta_s = -5.0^{\circ}$

Convergence of Thrust Coefficient

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

Convergence of Thrust Coefficient

N = 21

Convergence of Thrust Coefficient

N = 31

N = 11

N = 21

All cases run on 10 20-core lvy-bridge nodes on Pleiades supercomputer

N = 31

Time Accurate, N = 1440

- Space-time multigird
- Parallel in time for non-periodic problems

• Parallel in time for periodic problems (e.g. hover or straight & level forward flight)

- Space-time multigird
- Parallel in time for non-periodic problems

• Parallel in time for periodic problems (e.g. hover or straight & level forward flight)

- Space-time multigird
- Parallel in time for non-periodic problems

• Parallel in time for periodic problems (e.g. hover or straight & level forward flight)

- Space-time multigird
- Parallel in time for non-periodic problems

• Parallel in time for periodic problems (e.g. hover or straight & level forward flight)

1,000 CPUs in space x 1,000 CPUs in time = 1M processors

Acknowledgements

US Army Aeroflightdynamics Directorate for financial & technical support

NASA Advanced Supercomputing (NAS) Division for computational resources & technical support

