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Objective 
Merge the two techniques in a general and 
consistent manner



Outline

3

The Time-Spectral Method 

Hybrid Time-Spectral Scheme 

OVERFLOW 

Numerical Results 

Summary & Future Work



The Time-Spectral Method
Space-Time Domain

4
Space

T
im

e



The Time-Spectral Method
Space-Time Domain

4
Space

T
im

e

Local support in space (finite differences)

Time level k



Periodic Temporal Boundary 

The Time-Spectral Method
Space-Time Domain

4
Space

T
im

e

Local support in space (finite differences)

Time level k



Periodic Temporal Boundary 

The Time-Spectral Method
Space-Time Domain

4
Space

T
im

e

Infinite support in time (Fourier series)
Node j



The Time-Spectral Method
Fourier Collocation in Time - Problem Statement

5

Time-periodic PDE

Fourier series 

u (x, t) =
1X

k=�1
ũk (x)�k (t) , �k (t) = ei!kt

RN (x, t) =
@

@t
uN (x, t) +R (uN (x, t)) , x 2 ⌦

@

@t
u (x, t) +R (u (x, t)) = 0, x 2 ⌦, s.t. u (x, t+ T ) = u (x, t)

uN (x, t) =
KX

k=�K

ũk (x)�k (t)

 j = � (t� tj) , w = 1, tj =
jT

N

Method of weighted residuals

(RN , j)w =

TZ

0

wRN (x, t) j dt = 0, x 2 ⌦, j 2 {0, . . . , N � 1}
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The Time-Spectral Method
Fourier Collocation in Time - Differentiation Operator
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Analytically differentiate Fourier series

uN (x, t) =
KX

k=�K

ũk (x) e
i!kt @

@t
uN (x, t) =

KX

k=�K

i!kũk (x) e
i!kt

Discrete Fourier Transform

Fourier interpolation differentiation operator

uN (x) = {uN (x, t0) , . . . , uN (x, tN�1)}T

@

@t
uN (x, tj) =

N�1X
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The Time-Spectral Method
Fourier Collocation in Time 
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Fully discrete form

Semi-discrete form
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Pseudotime integration
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(b) Solution Time Histories

Figure 1: Figurative piston trajectory and solution histories. (a) The piston “cuts” nodes b and c as
it oscillates over the background grid. (b) Shaded regions represent blanked intervals through which the
solution is undefined for nodes of the corresponding color.

with
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jk

= �

k

(t
j

) = e

i!kt

j (4)

serving as the transformation operator. The di↵erentiation operator is applied in the frequency domain, i.e.
d

dt

û

k

= i!kû

k

, and the result is projected back into the time domain leading to

�D��1
u + R(u) = 0 (5)

@u

@t

=
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@t

�û (6)

= �Dû (7)

@u

@t

= �D��1
u (8)

�D��1
u + R (u) = 0 (9)

where D is the diagonal Fourier di↵erentiation operator, D

jk

= i!k�

jk

. Direct assembly of the transformed
di↵erentiation operator, D = �D��1, is derived in [7, 8]. Iterating Eq. 5 in pseudotime, ⌧ , provides a
steady-state solution procedure to an underlying unsteady, yet periodic, problem.a

d

d⌧

u + Du + R(u) = 0 (10)

The majority of spatial nodes in an overset or Cartesian simulation possess complete time histories and are
thus treated with this standard procedure, but an accurate and robust treatment is still required for the
complement of nodes that undergo dynamic blanking.

One approach is to fill the blanked nodes with solution data via spatial averaging and proceed with the
standard Time-Spectral method (cf. [17]). While attractive for its simplicity, this approach is inconsistent.
Non-physical information provided by an alternative governing equation (spatial smoothing is governed by

aAlternatively, the residual operator can also be projected into the frequency domain, and the resulting equations solved
iteratively in the frequency domain [3,6]. This approach takes advantage of the Fast Fourier Transform which is an O (N logN)

operation as opposed to the O
�
N2

�
matrix operation in Eq. 5. However, for the small N typically encountered in practical 3D

Time-Spectral applications (O(10� 100)) the di↵erence is minimal and the time domain formulation allows for straightforward
implementation within a steady-state solver with the addition of the temporal di↵erentiation source term.
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û

k

= i!kû
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Hybrid Time-Spectral Method
Local Expansion of the Solution - Bounded Interval
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Barycentric Rational Interpolant Other common operators
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dx

, for x 2 [�1, 1]. (a)
Even-odd harmonic function and (b) Runge’s function.

spectral convergence for both functions (albeit delayed for Runge’s function in con-

trast to the harmonic function) and boundary condition selection makes a significant

di↵erence for spline-based di↵erentiation. While the rational interpolant-based dif-

ferentiation operator demonstrates spectral-like convergence for d
max

2 {8, 16} on

the smooth harmonic function, it diverges for those values of d for small N in the

case of Runge’s function. Taking the best rational result for every N in the Runge’s

function example produces spectral-like convergence (outpacing the Chebyshev con-

vergence) reinforcing the importance of selecting an appropriate d. Using a lower

value of d is associated with higher compactness, and is therefore more successful for

high-frequency functions (e.g. Runge’s function) for small N . For smooth functions

like the harmonic example, a large value of d poses no problem. Optimal selection

of d and d
max

is problem dependent and an area of continuing research [84, 88]. It

is expected that the choice of d will strongly influence the stability of the matrix

operator; stability considerations are addressed in Appendix B.
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Figure 4.9: Convergence of di↵erentiated harmonic function, f(x) = 1 + cos(⇡x) +
sin(⇡x), x 2 [�1, 1], using the barycentric rational interpolant-based di↵erentiation
operator for di↵erent values of d

max

and other di↵erentiation operators on equispaced
nodes (Chebyshev on Chebyshev nodes).
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Figure 4.9: Convergence of di↵erentiated harmonic function, f(x) = 1 + cos(⇡x) +
sin(⇡x), x 2 [�1, 1], using the barycentric rational interpolant-based di↵erentiation
operator for di↵erent values of d

max

and other di↵erentiation operators on equispaced
nodes (Chebyshev on Chebyshev nodes).

f (x) = 1 + cos (⇡x) + sin (⇡x)
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spectral convergence for both functions (albeit delayed for Runge’s function in con-

trast to the harmonic function) and boundary condition selection makes a significant

di↵erence for spline-based di↵erentiation. While the rational interpolant-based dif-

ferentiation operator demonstrates spectral-like convergence for d
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2 {8, 16} on

the smooth harmonic function, it diverges for those values of d for small N in the

case of Runge’s function. Taking the best rational result for every N in the Runge’s

function example produces spectral-like convergence (outpacing the Chebyshev con-

vergence) reinforcing the importance of selecting an appropriate d. Using a lower

value of d is associated with higher compactness, and is therefore more successful for

high-frequency functions (e.g. Runge’s function) for small N . For smooth functions

like the harmonic example, a large value of d poses no problem. Optimal selection
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Figure 4.10: Convergence of di↵erentiated Runge’s function, f(x) = 1
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[�1, 1], using the barycentric rational interpolant-based di↵erentiation operator for
di↵erent values of d

max

and other di↵erentiation operators on equispaced nodes
(Chebyshev on Chebyshev nodes).
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Drag Producing Case, St = 0.288 
k = 3.6, h = 0.08

Thrust Producing Case, St = 0.6 
k = 6.0, h = 0.1

JONES, DOHRING, AND PLATZER 1243

Fig. 6 Vortex street indicative of drag production (Vp = 0:29).

Fig. 7 Vortex street indicative of zero drag (Vp = 0:46).

Fig. 8 Vortex street indicative of thrust production (Vp = 0:60).

For large V

p

, a deèected or dual-mode vortex street is generated,
as shown in Fig. 9. In this case, k D 12:3 and h D 0:12, resulting
in V

p

D 1:5. Here, in addition to a net thrust, a net lift is observed
according to the deèection of the vortex street and the computed,
time-averaged lift coefécient.

In Figs. 6–9, the upper image is a schematic illustrating the rota-
tional orientationof the eddies, and the lower image is a photo from
the water tunnel. In Figs. 8 and 9, the central image is a snapshot
of the wake structures computed by the panel code. The potential-
èow code predicts zero drag for a stationary airfoil and thrust for
an airfoil plunging at any énite frequency. Consequently, there are
no numerical solutions with wake structures comparable to those in
Figs. 6 and 7.

Fig. 9 Dual-modevortex street indicativeof thrust and lift (Vp = 1:50).

Numerically, the mode (vortex street deèected up or down) is de-
termined by the initial conditions and appears to be éxed through-
out the simulation. However, in the water tunnel, the vortex street
seemed to alternate between modes somewhat randomly, suggest-
ing that relatively small disturbances may trigger the switch. This
is discussed in more detail in the next section.

Qualitative and quantitative comparisons of the wake structures
are made by comparing photographs of the water-tunnel experi-
ments with the digital images from the panel code, such as those
shown in Figs. 8 and 9. The qualitative agreement demonstrated in
Figs. 8 and 9 is astonishing. The fact that inviscid theory so ac-
curately captures these highly nonlinear, deèected wakes suggests
that the evolution of the vortical structures is essentially an inviscid
phenomenon.

Quantitative comparisons between experiment and computation
are moredifécult. The wakewavelength,deéned here as thedistance
between vortices of like rotation (as indicated in Figs. 2 and 3), is
estimated by predicting the location of the vortex centers in the ex-
perimental and numerical images. Note that both the experimental
and numerical data for this are based on observationsof vortex posi-
tions, and consequently, the margin of error is not well deéned. For
the experimental data, it is estimated to be on the order of §0:08=c,
and this is probably appropriate for the numerical data as well.

The measured wake wavelengths are plotted in Fig. 10 as a
function of the plunge amplitude for k D 3:00, 6.83, and 12.32.
The curves from the panel code approximately extrapolate to the
wavelengthspredicted by linear theory (¸ D 2º=k

), ¸ D 2:09, 0.92,
and 0.51, respectively, as the plunge amplitude approaches zero.
The agreement between linear theory and the panel code is no-
tably worse at low frequencies. The wake roll-up is minimal
in these cases, and the determination of the vortex centers be-
comes difécult. As expected,due to proéle drag, the experimentally
measuredwavelengthsunderpredictlinear theoryat low frequencies
and plunge amplitudes but agree well with the panel code at higher
frequencies and amplitudes.

The panel code predicts a thrust coefécient that is roughly pro-
portional to the square of V

p

. For all nonzero V

p

, the panel code
predicts a positive thrust and, hence, a wake wavelength larger than

Jones et al. [’98]

Experimental
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Figure 4: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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(b) Three harmonics, N = 17

Figure 5: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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(b) Three harmonics, N = 9

Figure 4: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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Figure 5: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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(b) Three harmonics, N = 9

Figure 6: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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(b) Three harmonics, N = 17

Figure 7: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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Time-Spectral solution to 201 points shown with the green-hashed line.

8 LIST OF FIGURES

�0.12 �0.08 �0.04 0.00 0.04 0.08 0.12
�35

�27.5

�20

�12.5

�5

2.5

10

h/c

c d
⇥

10
2

(a) Single harmonic, N = 5.

�0.12 �0.08 �0.04 0.00 0.04 0.08 0.12
�35

�27.5

�20

�12.5

�5

2.5

10

h/c
c d

⇥
10

2

(b) Three harmonics, N = 17

Figure 7: Drag-producing laminar plunging airfoil at M1 = 0.2 and Sr = 0.29. Time Spectral ver-

sus Time Accurate drag coe�cients for N 2 {3, 9, 33}. Ten periods of the rigid-motion time-accurate

solution are plotted in red from steady-state startup. Blue squares locate the drag coe�cient values

at the Time-Spectral collocation points for relative-body motion. Relative-body drag coe�cients

computed from an interpolation of the Time-Spectral solution to 201 points shown with the blue-

hashed line. Green diamonds locate the drag coe�cient values at the Time-Spectral collocation

points for rigid-body motion. Rigid-body drag coe�cients computed from an interpolation of the

Time-Spectral solution to 201 points shown with the green-hashed line.
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3 blades x 2M nodes per blade 
21M off-body nodes 
27M total nodes

All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer
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(b) Spectrum of streamwise momentum, |⇢̃u|.

Figure 1: Time and frequency response of subsonic plunging airfoil with an o↵-body
grid translating with the airfoil. The frequency content at the near- and o↵-body
nodes are nearly identical.
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Figure 2: Time and frequency response of subsonic plunging airfoil with a stationary
background grid. The frequency content at the near- and o↵-body nodes are strikingly
di↵erent with many more modes required to resolve the solution at the node on
the stationary background grid. The node on the background grid is the same one
described in Fig. 1a, but the background grid was translating with the airfoil in that
case and only a few modes are required to resolve the solution in that case.
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described in Fig. 1a, but the background grid was translating with the airfoil in that
case and only a few modes are required to resolve the solution in that case.
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(b) Stationary node on background grid in relative-body motion

Figure 3: Reconstruction in time of streamwise momentum at a node on the o↵-
body grid (a) translating with the airfoil and (b) stationary (relative motion). The
solution at the stationary node requires approximately M = 32 modes to reasonably
reconstruct the continuous signal whereas the solution at the translating node requires
approximately M = 4 modes suggesting an inherent ine�ciency in using relative
motion. However, rigid-body motion is not universally applicable so relative-body
motion must be used for certain configurations.
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Figure 3: Reconstruction in time of streamwise momentum at a node on the o↵-
body grid (a) translating with the airfoil and (b) stationary (relative motion). The
solution at the stationary node requires approximately M = 32 modes to reasonably
reconstruct the continuous signal whereas the solution at the translating node requires
approximately M = 4 modes suggesting an inherent ine�ciency in using relative
motion. However, rigid-body motion is not universally applicable so relative-body
motion must be used for certain configurations.
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128 CHAPTER 6. NUMERICAL RESULTS

Time-Spectral calculations demonstrate strong agreement in both cases.

In general, dozens of periods are required to converge certain functionals of interest

in a time-accurate calculation. The Figure of Merit, FM , is an established scalar

performance measure for rotorcraft in hover that measures rotor e�ciency; it is a

ratio of the ideal power, derived from momentum theory, to the actual (computed)

power.

FM =
1p
2

C
3/2

T

C
Q

(6.1)

The Time-Spectral simulation is steady in nature and converges directly to the space-

time solution.

C
T

C
Q

FM

TS 0.11379 ⇥ 10�1 0.15320 ⇥ 10�2 0.5602

TA 0.11382 ⇥ 10�1 0.15320 ⇥ 10�2 0.5605

Table 6.2: Isolated V-22 Osprey Tiltrotor in Hover. Force and moment coe�cients
and Figure of Merit for the single-harmonic (N = 3) Time-Spectral (TS) and time-
accurate (TA) calculations.

Table 6.2 provides the force and moment coe�cients and the Figure of Merit

for the time-accurate and single harmonic Time-Spectral calculations. The Figure

of Merit computed using the Time-Spectral method with a single harmonic agrees

with the time-accurate result to five percent of a percent. However, the Figure of

Merit is substantially lower than those presented in [104, 109, 110, 103]. This dis-

crepancy is attributable to the use of only second-order central di↵erencing of the

convective terms, as opposed to higher-order schemes in the references cited. Prelim-

inary results do indicate an improvement with increasing the spatial discretization

order of accuracy. Nevertheless, the case of hover has validated the three-dimensional

Time-spectral implementation.

Single harmonic, N = 3
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Convergence of Thrust Coefficient 

All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer

TA

N = 11

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11

(a) Five harmonics, N = 11

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21

(b) Ten Harmonics, N = 21

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21
N = 31

(c) Fifteen harmonics, N = 31

Figure 19: Isolated V-22 Osprey Tiltrotor in Forward Flight. Reconstruction of Time-Spectral thrust co-
e�cient, C

T

, for N 2 {11, 21, 31} against the time-accurate result using a time step of equivalent to 0.25�

(�t = T/1440).

27 of 27

American Institute of Aeronautics and Astronautics



Three-Dimensional V22 TRAM
Forward Flight - Advance ratio, μ = 0.2, Mtip = 0.625, Re = 2.1 x 106

31

Convergence of Thrust Coefficient 

All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer

TA

N = 21

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11

(a) Five harmonics, N = 11

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21

(b) Ten Harmonics, N = 21

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21
N = 31

(c) Fifteen harmonics, N = 31

Figure 19: Isolated V-22 Osprey Tiltrotor in Forward Flight. Reconstruction of Time-Spectral thrust co-
e�cient, C

T

, for N 2 {11, 21, 31} against the time-accurate result using a time step of equivalent to 0.25�

(�t = T/1440).

27 of 27

American Institute of Aeronautics and Astronautics



Three-Dimensional V22 TRAM
Forward Flight - Advance ratio, μ = 0.2, Mtip = 0.625, Re = 2.1 x 106

31

Convergence of Thrust Coefficient 

All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer

TA

N = 31

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11

(a) Five harmonics, N = 11

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21

(b) Ten Harmonics, N = 21

0 90 180 270 360
1

2

3

4

 

C
T

⇥
10

3

TA
N = 11
N = 21
N = 31

(c) Fifteen harmonics, N = 31

Figure 19: Isolated V-22 Osprey Tiltrotor in Forward Flight. Reconstruction of Time-Spectral thrust co-
e�cient, C

T

, for N 2 {11, 21, 31} against the time-accurate result using a time step of equivalent to 0.25�

(�t = T/1440).

27 of 27

American Institute of Aeronautics and Astronautics



Three-Dimensional V22 TRAM
Forward Flight - Advance ratio, μ = 0.2, Mtip = 0.625, Re = 2.1 x 106

32All cases run on 10 20-core Ivy-bridge nodes on Pleiades supercomputer

N = 11 N = 31N = 21 Time Accurate, N = 1440



Future Work

33

• Space-time multigird 
• Parallel in time for periodic problems (e.g. hover or straight & level forward flight) 
• Parallel in time for non-periodic problems



Future Work

33

• Space-time multigird 
• Parallel in time for periodic problems (e.g. hover or straight & level forward flight) 
• Parallel in time for non-periodic problems



Future Work

33

Today 
1000 CPUs for domain decomposition 

∾30 hours wall-clock time

• Space-time multigird 
• Parallel in time for periodic problems (e.g. hover or straight & level forward flight) 
• Parallel in time for non-periodic problems



Future Work

33

Today 
1000 CPUs for domain decomposition 

∾30 hours wall-clock time

• Space-time multigird 
• Parallel in time for periodic problems (e.g. hover or straight & level forward flight) 
• Parallel in time for non-periodic problems

Tomorrow 
1,000 CPUs in space x 1,000 CPUs in time = 1M processors 

∾5 minutes wall-clock time
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