Simulations of Coastal Ocean Flows Using Chimera Grids

Hansong Tang, Ke Qu, and Anil Agrawal Dept. of Civil Eng., City College City Univ. of New York

Supported by NSF (CMMI #1334551), PSCUNY

Outline

- I. Introduction: Needs and current status
- II. Modeling framework
- **III.** Coupling strategies
- IV. Application examples
- V. Concluding remarks

I. Introduction: Needs and current status

Coastal Flows: Example Problems

Bridge carrying US-90 damaged during Hurricane Katrina (Douglass et al. 2006)

A destroyed section of boardwalk at Long Beach, NY (Photo by Bruce Bennett/Getty Images)

Multi-scale and Multi-physics Coastal Ocean Flows

A modeling question:

How can we make a high fidelity, detailed simulation of such phenomena, considering actual settings, forcing, etc.?

Other problems: oil spill,

Current Status, Challenge, and Approach

- Large-scales: geophysical fluid dynamics (GFD): O(10) O (10,000) km, O(1) min O (1) month
- Smaller scales: fully 3D fluid dynamics (F3DFD): O(10) cm O (10) km, O(1) ms O (1) hr
- Challenges: coastal ocean flows are multi-scale, multi-physics, most current models are designed for individual phenomena: circulation, wave, etc.
- Objective: high-fidelity, detailed simulation of coastal ocean flows, especially those at small scales.
- Approaches: Hybrid GFD/F3DFD (with change in the two models as less as possible)
 - References of this presentation:
 - Tang, Wu, and Qu, JCP 2014

- Tang, Qu, Wu, and Zhang, DD22, Lugano, Switzerland, 2013.
- Tang and Wu, IEMSS, Ottawa, Canada, 2010
- Tang, Comput. & Fluids, 2006
- Tang, Jones, and Sotiropoulos, JCP 2003

II. Modelling framework

Fully 3D Fluid Dynamics and Coastal Ocean Model

$$\nabla \cdot \mathbf{u} = 0,$$

$$\mathbf{u}_{t} + \nabla \cdot \mathbf{u}\mathbf{u} = -\frac{1}{\rho_{0}} \nabla p + \nabla \cdot ((v + v_{t})\nabla \mathbf{u}) \quad g(1 - \alpha(T - T_{0}) - \beta(C - C_{0}))\mathbf{k} \quad \leftarrow \quad \text{Gravity \& buoyancy}$$

$$T_{t} + \nabla \cdot (\mathbf{u}T) = \nabla \cdot \left(\left(\frac{v}{p_{T}} + \frac{v_{t}}{p_{T_{t}}}\right)\nabla T\right). \quad \text{SIFOM -- solver for incompressible flow on overset meshes (Tang et al. 2003; Ge and Sotiropoulos 2005, ...) \quad \text{External mode}$$

$$FVCOM - \text{finite volume method coastal ocean model (Chen et al., 2003; ...)} \quad \begin{array}{c} \eta_{t} + \nabla_{H} \cdot (\mathbf{V}D) = 0, \\ (\mathbf{V}D)_{t} + \nabla_{H} \cdot (\mathbf{V}D) = -gD\nabla_{H}\eta + \frac{\tau_{s} - \tau_{b}}{\rho_{0}} + \mathbf{G}. \\ (\mathbf{V}D)_{t} + \nabla_{H} \cdot (\mathbf{V}D) + \omega_{\sigma} = 0, \\ (\mathbf{v}D)_{t} + \nabla_{H} \cdot (\mathbf{v}D) + \omega_{\sigma} = 0, \\ (\mathbf{v}D)_{t} + \nabla_{H} \cdot (\mathbf{v}D) + (\mathbf{v}\omega)_{\sigma} = -gD\nabla_{H}\eta + \nabla_{H} \cdot (\kappa \mathbf{e}) + \frac{1}{D}(\lambda \mathbf{v}_{\sigma})_{\sigma} \\ - \frac{gD}{\rho_{0}} \left(\nabla_{H} \left(D\int_{\sigma}^{0} \rho d\sigma'\right) + \sigma\rho\nabla_{H}D\right) + \mathbf{H} \\ (TD)_{t} + \nabla_{H} \cdot (TD\mathbf{v}) + (T\omega)_{\sigma} = \nabla_{H} \cdot (\theta\nabla_{H}T) + \frac{1}{D}(\vartheta T_{\sigma})_{\sigma} + \mathbf{I} \\ \end{array}$$

Outline of Coupling

SIFOM/FVCOM coupling:

- --- Domain decomposition, Chimera grids, overlapping regions, and Schwarz alternative iteration
- --- Coupling between SIFOM and FVCOM : exchange of solution for η , u, v, w
- --- Tri-linear interpolation, FVCOM → SIFOM, SIFOM → FVCOM

Focus of this presentation: 1) Treatments of coupling

2) Demonstration of feasibility and performance

Test1 --- Flow over Sill

$$\begin{cases} -1500 < x < 2000, \\ y = \pm 200(1 - 0.8e^{-4 \times 10^{-6}x^2}), \quad x < 0; \quad y = \pm 40, \ x > 0, \\ z = -150 + \frac{140}{1 + (x/500)^4}, \ x < 0; \quad z = -120 + \frac{110}{1 + (x/500)^4}, \ x > 0, \end{cases}$$

Configuration of channel and sill

$$\begin{cases} u, v, w = 0, \ t = 0, \\ \eta u = 0.9175(1 - e^{-0.01t}), \ x = -1500; \ \eta = 0, \ x = 2000. \end{cases}$$

IC & BC

Test2 --- Thermal Discharge Flow

Ambient parameter			Effluent parameter					
Velocity, U_a (m/s)	Temperature, T_a (°C)	Channel depth, <i>H</i> (m)	Velocity, U _d (m/s)	Temperature, T_d (°C)	Port diameter, <i>d</i> (m)	Port length, L_d (m)	Port angle, α (degree)	Pipe diameter, D (m)
0.05	20.5	12.3	3.92	32.0	0.175	0.91	30°	1.32

Treatment of Hydrostatic Pressure

Treatment of Buoyancy

10 x(m)

0.4 million nodes **CPU** time comparison

Model	CPU
SIFOM 1	300%
SIFOM2	100%

Treatment of Buoyancy

FVCOM

Simulations and Convergence Test

1,53

2,73

1.08

1,68

IV. Application examples

Flow past Bridge Peers in Channel

IV. Application examples

Comparison with Measurement

Velocity profiles at different locations

IV. Application examples

Flow Past Coastal Bridge – Model Setup

Meshes of FVCOM and CFD model

Simulated Flows

V. Concluding remarks

Discussions

Conclusion:

- 1) Chimera grid method is promising in coupling fully 3D fluid dynamics and coastal ocean models, which is challenging; it integrates different governing equations, distinct numerical systems, and dissimilar meshes.
- 2) SIFOM-FVCOM works well, and it can be applied to actual problems.

Future work:

- 1) More validation and experiment of the modeling system
- 2) Better model interface algorithms
- 3) Improve computational efficiency of the system

4)

Question?

Thanks!