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Background 

UH-60 “Blackhawk” 

CH-47 “Chinook” 

• Complexities in high fidelity rotary-wing 

aeromechanics prediction 

– Complex geometries 

– High-Re wall-bounded viscous flow 

– Wake resolution 

– Strong aero-structure coupling, particularly blade 

twist from pitching moment 

Model V22 

Rotor 

UH-60A 
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• Rotorcraft CFD steps 

 

 

Issue #1: Automation 

Native 

CAD 
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Near-body 

Volume 
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Mesh 
6% 

Off-body 

Cartesian 

Mesh 

Domain 

Connectivity 
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Solution 
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Processing 

Adaptive Mesh 

Refinement 

JMR Concept 

How do we enable skilled rotorcraft 

engineers to use high-fidelity CFD tools 

without forcing them to become grid 

generation experts? 

Mostly Automated in CREATETM-AV HELIOS code 
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Issue #2: Accuracy 

• Lower order near-body solver limits ability 

to resolve tip rollup 

Tip vortex 

expansion 

Blade Tip 

Tip vortex 

dissipation 

Lim et al AHS Forum‘2012 

HART-II   
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Issue #3: Speed 

66% 
17% 

10% 6% 

Model V22 Hover - 128 procs 

Near-body 

Off-body 

Dom Conn 

RCAS 

Other 

5% 1% 
65% 28% 

5% 

UH60 Fwd Flight – 512 procs 

• Near-body solver is the most expensive 

portion of the simulation 

Two-thirds total cost 
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Strand Technology Addresses 

these Issues  

• Accuracy & Efficiency 

– High-order solver formulation that takes 

advantage of strand data structure 

– Fast and scalable domain connectivity 

– Structured data ensures fast numerics 

– 4th order solutions at only 1.5X cost of 

2nd order solutions 

• Automation 

– Near-body strands grown directly from 

surface tessellation 

– Cartesian off-body resolution adjusted 

according by available compute resources 

– Strand-Cartesian volume mesh generated 

automatically at runtime 

2nd-O 4th-O 

Flow over cylinder 
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High Order Approach 

• Strand normal direction:                    

High Order Finite Differences 

– Summation by parts with variable 

coefficients 

– Reduces to finite difference at interior 

– Satisfies stability and accuracy constraints 

• Unstructured streamwise direction: 

High Order Flux corrections  

– Achieves high order through truncation 

error cancellation of finite volume scheme 

– Layers coupled via source term containing 

derivatives in strand direction 
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Solver 

 

• Spalart Allmaras turbulence model treatment 

– Allows negative turbulence working variable (Allmaras 2012) 

– Fully-coupled high-order treatment 

RANS-SA equations 
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Strand Mapping 

• Map from physical to computational space 

– Equally-spaced sub-triangles in r-s 
(streamwise) plane in computational 

space 

– Cubic or quadratic  sub-triangles 

– Stretched node distribution in h 
(normal) direction mapped to equal-

spaced distribution in computational 

space 

– Surface triangles treated as cubic or 

quadrilateral elements 

Physical 

space 
Computational 

space 

Cubic Quadratic 
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Flux Correction Scheme 

• Finite Volume flux balance 

 

Flux 

across 

face 

• Advantages: 

– Able to leverage finite volume techniques 

(shock capturing, efficient solvers, etc.) 

– no high-order quadrature or least squares 

reconstruction 

– builds on existing infrastructure 

• Compute left/right fluxes such that 

truncation error of each cancels when 

added together 
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Extend flux corrected schemes 

to turbulent flows on 

high aspect ratio strand grids 

Flux Correction Schemes 
Previous Work  

Fin Vol - 8619 nodes 

Flux Corr - 4620 nodes 

Katz and Sankaran  

J. Sci. Comput. 2012 

Subsonic 

NACA 0012 

(steady, 

inviscid) 

Shedding square 

(M=0.1, Re=250, 

~3000 nodes) 

Pincock and Katz, 

AIAA-2013-2566 

Finite Volume Flux Corr 
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Strand Direction Coupling 

• Treat strand direction 

derivatives as source term 

to preserves flux correction 

accuracy 
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Strand Direction  

• High order achieved in strand direction through finite 

differences 

– Summation by parts operators  

– Energy stable 

– Fernandez & Zingg, 2012; Mattsson, 2012 

• Accuracy 

– 2p interior 

– p boundary  

– p+1 overall 

– Implemented p=1,2,3 

3, 5, 7 point stencil 

j j+1 j+2 j+3 j-3 j-2 j-1 

E 
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Accuracy Verification (cont) 

inviscid terms only viscous terms only 

3rd-4th Order 

achieved in tests 

Re=100 Cylinder 

inviscid + viscous  

Method of 

Manufactured Solns 
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Implicit Scheme 

• Semi-implicit Multi-grid scheme 

– Standard FAS multigrid (Brandt, 1977) 

– LU-SGS (Yoon, Jameson) on strand layers 

– Local RK with implicit smoothing on each unstruct plane (Jameson, 

Mavriplis) 

– Use of triangles enables 3-element coarsening without agglomoration 

level 1 level 2 level 3 
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Laminar Flow Validation 

• Flow over circular cylinder 

– Re=100 

Mesh 2nd Order 4th Order 

Coarse (96x32) steady 0.141 

Medium (192x64) 0.159 0.165 

Fine (384x128) 0.177 0.167 

coarse medium fine 

Coarse mesh 

2nd O 

4th O 2nd O 

4th O 

*Experiment: St = 0.16-0.17 

Strouhal Number 
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Turbulent Flow Validation 

• Flow over channel bump 

– M=0.2 

– Re=3 Million 

– 4th order 

 

Turbulent eddy viscosity 

Velocity 

profile 

Eddy 

viscosity 

profile 

Good correlation with 

NASA’s FUN3D, CFL3D 

 

• FUN3D and CFL3D results from 

1409x641 grid 

• Strand grid 40X coarser   
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Dual Mesh Validation 
Moving bodies 

• Added moving grid 

terms  

M=0.5 

Re=100 

Moving sphere 

M=0.5 

Moving 

CD 

Static 0.2861 

*Moving 0.3002 

Static 

*Moving grid convergence limited by fine off-body grid extents 
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Dual Mesh Validation 
Timing comparison w Helios 

• Same mesh, Helios 

vs strand solver 
– NSU3D run on strand 

mesh 

– strand solver cell-centered, 

more DOF 

M=0.3 

Re=100 

10K steps 

Steady 

Moving 

Helios Strand 

*Near-body 0.086s 0.604s 

Off-body 1.82s 1.75s 

Domain connectivity 6.26e-3 7.42e-3 

*Strand solver uses more DOF than Helios 

Strand len = 0.1 

Diameter = 2.0 
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Dual Mesh Validation 
Turbulent bluff body 

• Helios implementation 
– Strand near-body 

– SAMARC off-body 

• Bluff body separated 

flow over sphere 

– M = 0.3, Re = 12.0E6 

– Dual mesh 

– Adaptive 

Vorticity 
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3D Wing 

• NACA 0015 Wing 

– Aspect Ratio = 6.6 

– M = 0.1235, Re = 1.5E6 

– Dual mesh 

– Adaptive 

Helios v4 

Strand 

= 0.1235,  =12o  

V

 

M
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Computational Efficiency 

• 4th order strand-based FV scheme order of magnitude 

cheaper than Discontinuous Galerkin (DG) methods 

– Standard finite differences in normal (strand) direction 

– Standard finite volume flux correction in streamwise directions 

Specified error threshold 

order of 

magnitude 

difference 

AMD Phenom II 

T
im

e
 

Intel i3 

Courtesy D. Work, Utah St. 

Cost of 4th order scheme 

comparable to standard 2nd order 
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Summary & Conclusions 

• Strand technology will improve automation, accuracy, and 

efficiency in Helios 

• In past OGS meetings we have reported on strand-specific 

meshing infrastructure (PICASSO) and domain connectivity 

(OSCAR) 

• Present development focus is an efficient high-order near-body 

strand solver 

– Achieve up to 4th-order through a combination of finite difference and flux 

correction operations 

– Cost comparable to standard 2nd-order FV methods; order of magnitude cheaper 

than high order finite element (DG) methods 

– Accuracy on par with established FUN3D, CFL3D codes  

• Anticipate initial capability release in Helios v6 (Summer 2015) 

– Multiple bodies 

– Complex geometries 
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