

CHIMERA GRID TOOLS TUTORIAL

William M. Chan and Shishir A. Pandya

NASA Ames Research Center

OVERVIEW

- Chimera Grid Tools (CGT)
 - Introduction
 - Pre-processing
 - Post-processing
- Demos
 - OVERGRID (brief overview, grid generation utilities, grid connectivity diagnostics, solution viewer)
 - Pre-processing script creation (rocket example)
 - TRILOAD line loads integration tool

A more detailed OVERGRID demo is available at: The OVERGRID Graphical User Interface in Chimera Grid Tools (Parts 1, 2, 3) http://www.nas.nasa.gov/publications/ams/2014/05-13-14.html http://www.nas.nasa.gov/publications/ams/2014/05-20-14.html http://www.nas.nasa.gov/publications/ams/2014/05-29-14.html

TYPICAL MODELING AND SIMULATION PROCESS USING OVERSET GRIDS

CHIMERA GRID TOOLS (CGT) Version 2.1

- William Chan, Stuart Rogers, Shishir Pandya, David Kao, Pieter Buning, Robert Meakin, David Boger, Steve Nash

Availability

- U.S. citizens/permanent residents working under U.S. organization in the U.S.
- Fill out and return Software Usage Agreement form
- Source (Linux, Unix, Mac OS-X)
- Executables (Mac 10.5, Windows-XP)
- Version 2.1+ available for use by authors' associated projects

INSTALLATION, DOCUMENTATION, TUTORIALS

Installation software requirements

- Fortran 90 compiler (ifort, pgf90, gfortran 4.4+)
- C compiler (gcc, icc, pgcc)
- OpenGL, X11, Tcl/Tk libraries (OVERGRID) Tcl/Tk 8.5.8 or earlier for CGT 2.1

Tcl/Tk 8.6.2 or earlier for CGT 2.1+

- Python, swig, matplotlib package or gnuplot (OVERSMART)
- Tcl wish, xmgrace or gnuplot (OVERPLOT)

Installation instructions

- chimera2.1/doc/{INSTALLATION.html, overgrid.html}

Documentation

- chimera2.1/doc/man.html

Recommended tutorials

- chimera2.1/gui/tutorial/*
- chimera2.1/examples/scriptlib/* (CGT script library)

(OVERGRID) (CGT script library)

EXECUTABLES

Run configure script to generate Makefiles

configure -- help (get list of options)

Executables

- single precision
- double precision
- og (overgrid executable)
- smart.so (oversmart shared library)

Big/little Endian

- controlled by compiler flag (pgf90)
- controlled by environment variable (ifort, gfortran)
- conversion using p3dConvert or overConvert

OVERGRID can auto-detect single/double precision, big/little endian

PRE-PROCESSING STEPS AND BEST PRACTICE

- Task: Given complex geometry definition, create input files needed for overset grid CFD analysis
 - Grid file containing overset volume grids and iblanks
 - Connectivity file containing fringe points, donor stencils, interpolation coefficients
 - Flow solver input file with boundary conditions for each grid
 - Input file for performing forces and moments integration on components of interest
 - Input files for coupled physics
 - Prescribed/6-DOF input files for relative motion problems
 - Species convection
 - Structural deformation

Best practice:

- Develop pre-processing script to create all input files needed above
- Use CGT's OVERGRID to check and visualize individual steps
- Use CGT's Script Library to record steps into script

PRE-PROCESSING USING CGT

Geometry Creation and Manipulation

Surface Grid Generation

- on triangulation or CAD
- algebraic, hyperbolic

Volume Grid Generation

- near-body curvilinear (hyperbolic)
- off-body Cartesian

Domain Connectivity Inputs

- Xray map creation and hole-cut instructions
- PEGASUS5

Flow Solver Inputs (OVERFLOW)

- boundary conditions
- component hierarchy and prescribed/6-DOF dynamics
- prescribed dynamics animation (overgrid)

GEOMETRY CREATION

Script Library has macros to create

Combine with basic macros to generate more complex shapes

- Points
- Straight lines
- Analytic curves
- Cylinders
- Frustums
- Cartesian boxes
- Airfoil shapes
- > NACA 4 and 5 digit series
- > PARSEC (CGT 2.1+)

- Translate
- Scale
- Rotate
- Mirror
- Extract
- Concatenate
- Revolve
- Duplicate

GEOMETRY INPUT

Native CAD (Pro-E, Catia V5, Parasolid, OpenCASCADE, SolidWorks, UniGraphics, FELISA, STEP)

- Use CAPRI library (CADNexus) as interface to convert native CAD parts into surface triangulations
- Need CAD license and CAPRI users license
- CGT surface grid generator has option to project back to original CAD but usually a fine surface triangulation is sufficient

STEP, IGES

- Solids can be converted to BRep, then use CAPRI as interface to convert to surface triangulations

Surface Triangulation

- CART3D (.tri, .triq) (.trix in CGT 2.1+)
- UCD (.ucd)
- FAST (.fst)
- STL (.stl), FRO (.fro) (CGT 2.1+)

Structured Surface Grids (PLOT3D format)

OVERGRID

VOVERGRID 2.2 - Graphics Window (pid 21649)	VERGRID 2.2 - Main Menu (pid 21649)
	MAIN MENU
	READ NEW WRITE SELECTED BEGIN SCRIPT
	READ APPEND WRITE ALL END SCRIPT
	General Grid Tools
	GRIDED SRAP PROGRD DIAGNOS TRIGED
	Surface Grid Volume Grid Generation Generation
	SEAMCR SURGRD SBLOCK WKCUT HYPGEN BOXGR
	Configuration Domain Flow Solver Information Connectivity Input
	TOPOLOGY & BC PEGASUSS CALCULATORS
	COMPONENTS GEN_X OVERFLOW-2
	Viewers and Special Modules
	HYBRID GRID SOLUTION DEBRIS TRACING
	HELP QUIT
	Entity # 0 Select Blank Clear All TogBlank
Botation Center Show Display Option View from Preferences Mem Use Total no.	Select 0 to 0 Unselect Unblank Delete Common
Vitera oz	Select All JMAX 0 KMAX 0 LMAX 0
V 0 Normals Smoo Shaded -X -Y -Z min. max. Surfaces 426	
Z 691.758 Z Curves 0 Reset to original Y Faces 1226528	□ surfaces JS □ U = KS □ U = LS □ U = □ curves □ const J □ const K □ const L
Reset All Show Blanks Or Brance Z Vertices 1271743	
Unblanked Dad Surfe Image Dump	

Supported platforms – Linux, Mac OS-X, Windows-XP

- CAD interface via CAPRI
- Geometry/grid processing (structured quads, triangulations)
- Grid processing, redistribution, projection
- Surface and volume grid generation (TFI, hyperbolic, Cartesian)
- Hole cutter generation
- Grid diagnostics
- Flow solver inputs and b.c. preparation
- Multi-component dynamics input/animation
- Standard atmosphere, mass properties, 6-dof input calculators
- Simple solution viewer
- Debris trajectory inputs
- Strand/AMR Cartesian grid viewer

CGT SCRIPT LIBRARY

Tcl macros -10x more compact scripts, > 3x faster development time

Low – Mid Level

- File manipulation (e.g., combine files, format conversion,...)
- Geometry creation (e.g., points, lines, analytic curves, cylinders,...)
- Grid information (e.g., interrogate grid dimensions, coordinates, arc lengths, formats,...)
- Grid editing (e.g., extract, concatenate, split, duplicate, swap/ reverse indices, scale, translate, rotate, mirror, revolve, ...)
- Grid redistribution
- Surface grid generation (TFI and hyperbolic)
- Volume grid generation (hyperbolic and Cartesian)
- X-ray hole cutter generation and hole cut instructions creation
- Pegasus5 input preparation
- Force/moments computation inputs
- OVERFLOW boundary conditions inputs and namelist i/o

Top Level

- Grid-based approach (Configuration Management Scripts, peg5)
- Component-based approach (duplicated/moving comp., X-rays)

PRE-PROCESSING STRATEGY USING SCRIPTS

Scripting approach

- rapid replay of all steps
- easy to parameterize inputs (e.g., grid stretching, spacings, etc.)
- easy to make small changes
- recommended even for one-of-a-kind cases
- modification needed if surface topology changes

Surface Grid Generation

- generate grids from
 - surface triangulation (from CAD, or supplied)
 - surface feature curves (from CAD, supplied, or manually created)

Volume Grid Generation

- near-body hyperbolic grids, off-body Cartesian grids

Domain Connectivity, Force/Moments Computation, Flow Solver Inputs

 construct and store common database in script (boundary conditions, component definitions, etc.) 13

DISTRIBUTED TEAM-BASED SCRIPT DEVELOPMENT

- Identify components of a complex configuration
- A component is a geometric part and may be modeled by one or more grids
- Create stand-alone script for each component
 - generation of surface and volume grids
 - domain connectivity inputs (X-ray maps)
 - solver boundary conditions
 - forces and moments integration inputs
- Each component script can be created by different developers
- Use file repository system to update script so that each team member can get most up-to-date version of each script
- Share global parameters file (e.g., wall spacing, global spacing, str. ratio, etc.)
- Each developer is responsible for grid connectivity of individual component
- Create master script to call component scripts, assemble final grid system, generate input files for domain connectivity, force/ moment integration, flow solver

POST-PROCESSING USING CGT

Forces and Moments Computation (mixsur/overint, usurp)

Solution Convergence Analysis

- solution/turb. model residuals, forces/moments
- one page overview (oversmart)
- individual plots (overplot)

Flow Visualization (overgrid)

- scalar and vector functions
- turb. model dependent variables, species partial densities
- unsteady 2-D movies

Component Line Loads (triload)

- cumulative line loads
- sectional Cp

Dynamics Animation (overgrid)

- 6-DOF dynamics output from flow solver

FORCES/MOMENTS INTEGRATION APPROACH 1 – INTEGRATE ON HYBRID SURFACE MESH CGT Modules: MIXSUR, OVERINT

Hybrid mesh generator (MIXSUR)

- Automatically blank overlapping quads
- Automatically fill narrow gap with triangles
- Very fast but may sometimes contain a few bad triangles (200 surface grids, 2 million+ surface pts, 22 sec., 1 proc.)

Integration tool (OVERINT)

- Integrates on non-overlapping quads and triangles
- Integrates linear function exactly

Chan, W. M., Enhancements to the Hybrid Mesh Approach to Surface Loads Integration On Overset Structured Grids, AIAA Paper 2009-3990

OVERINT OUTPUT FILES (RECENT DEVELOPMENTS)

- Surface distributions of local forces and moments

- Four unstructured surface triangulation files, each with cell-centered scalar variables (extended CART3D .i.tri format)
 - (1) Cell ∆F
 (2) Cell ∆F / Cell area
 (3) Cell ∆M
 (4) Cell ∆M / Cell area
- Scalars: X, Y, Z components of forces/moments total magnitude, pressure, viscous, momentum contributions local cell area

FORCES/MOMENTS INTEGRATION APPROACH 2 – INTEGRATE ON WEIGHTED QUADS CGT Module: USURP

Polygon subtraction in 3-D

 A_Q = Area of quadrilateral A_{OV} = Area of overlap

Quad panel weights calculator and integrator (USURP)

- Automatically computes panel weight for each quad
- Always returns a result by integrating over all quads
- No hybrid mesh => no visual checks
- Does not integrate linear function exactly
- Also has standalone and OVERFLOW modes

Boger, D. and Dreyer, J., Prediction of Hydrodynamic Forces and Moments for Underwater Vehicles Using Overset Grids, AIAA Paper 2006-1148

SOLUTION CONVERGENCE ANALYSIS: OVERPLOT Forces/Moments Panel (.fomoco)

SOLUTION CONVERGENCE ANALYSIS: OVERSMART SUMMARY PAGE Space Shuttle Launch Vehicle

10,000 Time Steps, 636 Grids, 3-Sub-iterations (resid file: 19 million lines)

SOLUTION VISUALIZATION

- 6-DOF component trajectories
- Flow variables
 - Surface triangulations
 - vertex and cell-centered scalars
 - Overset structured surface and volume grids
 - steady (scalars and vectors)
 - unsteady (scalars)
 - 2-D moving body with adaptive grids (scalars)

COMPONENT TRAJECTORIES VISUALIZATION FROM SIX-DOF COMPUTATIONS (OVERGRID module)

VISUALIZATION OF VERTEX-CENTERED DATA ON SURFACE TRIANGULATIONS

Standard CART3D triq file

VISUALIZATION OF CELL-CENTERED DATA ON SURFACE TRIANGULATIONS

Recent addition: Extended CART3D tri file with cell-centered scalars Local forces/moments tri file output from OVERINT

UVERGRID 2.3p++ - Graphics Window (pid 26531)	CHIMERA GRID TOOLS GUI - OVERGRID _ 🗆 🛪	
	Grid Diagnostics	
	Compute	
	 Stretching Ratio in J Turning Angle in J Vertex Degree 	
	○ Stretching Ratio in K ○ Turning Angle in K ○ Min. Angle	
	Stretching Ratio in L Truncation Error Max. Angle	
	Cell Aspect Ratio Average Cell Size Curvature Fun	
	Cell-centered scalars	
	• Q7 • Q8 • Q9 • Q10 • Q11 • Q12 • Q13 • Q14	
	□ Show Open edges 0 □ Show Bad normal edges 0	
	Sharp edge proximity Show vert Show face	
	Stencil size 0.001 Vertex 1 Val Clear	
	Reset Actual Grid J K L	
	min -252.8 -252.8 1 5115 0 0	
	max 222.85 222.89 1 48997 0 0	
	Color Scale	
Local Pitching	-252.8 -157.6 -62.54 32.601 127.74 222.89	
Moment Magnitude	HELP QUIT	

Writing Grid Scripts in CGT

Shishir Pandya, William Chan

Geometry Preparation

STEP 1: Obtain surface representation CGT Tool: cad2srf (CAPRI Library required) Input: CAD, Output: Surface Triangulation

STEP 2: Obtain seam curves

• Aircraft

- Leading and trailing edges
- wing/body junction
- tail/body junction
- Rocket
 - Axisymmetric body definition
 - protuberance junctions
 - Sharp features

CGT Tool: cad2srf Input: CAD; Output: Curves CGT Tool: seamcr, Isect Input: Structured patches; Output: Curves CGT Tool: seamcrt Input: Surface Triangulation; Output: Curves CGT Scriptlib Tools: CreateSeamCur Input: Structured patches, Triangulation; Output: Curves Option 2: DIY CGT Scriptlib Tools: CreateLine, CreateCurve, CreateAirfoilComponent, CreateParsecFoil, CreateCylGrids, CreateFrustumGrids

Option 3: Commercial Tools Ansa, PointWise, Star-CCM+, etc...

Ogen

Configuration or Component?

Configuration:

- Grid-centric
- Written for static geometries
- Rules must be followed
 - Set root names
 - Define input variables, defaults
 - Surface files: *.srf
 - Volume files: *.vol
 - Each file contains 1 grid
- Framework provided
- Short main script
 - BuildSurf
 - BuildVol
 - BuildPeg5i
- Peg5, X-rays supported

Component:

- Component-centric
- Written for repeated components and moving-body cases
- Rules must be developed by each user
 - Best practice:
 - Define input variables
 - Flexible filenames: *.sur, *.cut
 - Fixed names: *.vol, *.xry
 - Each file contains 1 component (Any number of grids)
- Framework contained in a main script
- Longer main script
 - Contains all calls for surface, volume, and connectivity according to user's choice.
- Supports X-rays (Overflow)
 - Basic support for Peg5, and c3p.

Surface Mesh Generation

- Curve Manipulation
- TFI grids
- Hyperbolically marched grids
 - Collar grids
- Assure proper surface coverage

Curve Manipulation

STEP 1: Identify curves that can be concatenated CGT Tool: grided Input: Curves, Grids; Output: Curves, Grids CGT Scriptlib Tools: ConcatGrids, ConcatGrids2, ConcatGridsn, AutoConcateGrids Input: Curves, Grids; Output: Curves, Grids

STEP 2: Identify curves that need to be split CGT Tool: grided Input: Curves, Grids; Output: Curves, Grids CGT Scriptlib Tools: ExtractSubs, ExtractGrids, GedSplitJkl, GedSplitXyz Input: Curves, Grids; Output: Curves, Grids

Curve Manipulation (cont.)

STEP 3: Redistribute CGT Tool: srap Input: Curves, Grids; Output: Curves, Grids CGT Scriptlib Tools: SrapRedist Input: Curves, Grids; Output: Curves, Grids

TFI Patches

TFI

STEP 1: Identify TFI patch curves

• Aircraft

- LE, TE, Root, Tip
- Rocket
 - Portions of protuberances CGT Tool: OVERGRID
 Input: Ref. Surface, Curves; Output: Grid
 CGT ScriptLib Tool: CombineGrids
 Input: Curves, Grids in multiple files; Output: Curves,Grids in one file

STEP 2: Create TFI patches

- Aircraft
 - Top of wing, Bottom of wing
 - Portions of other parts
- Rocket
 - Portions of protuberances CGT Tool: surgrd
 Input: Ref. Surface, Curves; Output: Grid CGT ScriptLib Tool: GenTFI
 Input: Ref. Surface, Curves; Output: Grid

Collar Grids

- STEP 1: Identify Starting curves
- Aircraft
 - Wing/Body junction
 - Tail/Body junction
- Rocket
 - Protuberances/Stack junction
 CGT Tool: OVERGRID

STEP 2: Create collar grids

- Identify Starting curves
- Aircraft
 - Wing/Body junction
 - Tail/Body junction
- Rocket
 - Protuberances/Stack junction CGT Tool: surgrd
 Input: Ref. Surface, Curves; Output: Grid CGT ScriptLib Tool: GenHypSurGrids
 Input: Ref. Surface, Curves; Output: Grid

Concatenate, Break-up Grids

STEP 1: Identify grids that can be concatenated, or need to be split CGT Tool: OVERGRID

STEP 2: Concatenate grids CGT Tool: grided Input: Ref. Surface, Curves; Output: Grid CGT ScriptLib Tool: ConcatGrids, ConcatGrids2, ConcatGridsn, AutoConcateGrids Input: Ref. Surface, Curves; Output: Grid

STEP 3: Split grids CGT Tool: grided Input: Ref. Surface, Curves; Output: Grid CGT ScriptLib Tool: ExtractGrids,GedSplitJkl, GedSplitXyz, ExtractSubs, SplitToNGrids Input: Ref. Surface, Curves; Output: Grid

Assure Complete Surface Coverage

STEP 1: Identify gaps, improper overlaps CGT Tool: OVERGRID

STEP 2: Identify/Create Curves CGT Tool: seamcr, seamcrt Input: Ref. Surface; Output: Curves CGT ScriptLib Tool: CreateSeamCurs Input: Ref. Surface, Curves; Output: Grid

STEP 3: Fill gaps

- TFI
- Hperbolic surface marching CGT Tool: surgrd Input: Ref. Surface, Curves; Output: Grid CGT ScriptLib Tool: GenTFI, GenHypSurGrids Input: Ref. Surface, Curves; Output: Grid

Volume Mesh Generation

Option 1: Interactively CGT Tool: hypgen Input: Surface grid; Output: Volume grid

Option 2: Configuration scripts CGT Scriptbin Tool: BuildVols Input: Surface grid; Output: Volume grid

Option 3: Component scripts CGT Scriptlib Tool: GenHypVolGrids, GenUniformBox, GenStretchedBox, CreateCore, BuildGeneralPlumeGrids, ... Input: Surface grid; Output: Volume grid

Option 4: Higher-level component scripts CGT Scriptlib Tool: BuildAxisymGrids Input: Axisym. curve or Surface grid; Output: Volume grid with caps

Connectivity

Step 1: Write connectivity inputs to file

Option 1: Manual

Option 2: Configuration scripts CGT Scriptbin Tool: BuildPeg5i Input: Volume grid; Output: Grid Connectivity

> Option 3: Component scripts CGT Scriptlib Tool: AddCutterID, SetCutterCutee, WriteOvr2InpFile Output: OVERFLOW input

Step 3: Run connectivity code

Option 1: Manual Tools: DCF/OVERFLOW, Pegasus5, etc. Input: Volume grid; Output: Connectivity

Option 2: Component scripts CGT Scriptlib Tool: RunConnectivityCode Input: Volume grid; Output: Connectivity

Step 2: Create x-rays DCF/OVERFLOW only CGT Scriptlib Tool: CreateXrayMap Input: Cutter, Output: X-ray

Step 4: Remove orphans CGT Tool: OVERGRID Diagnose Module

Boundary Conditions

Step 1: Setup BCs

Option 1: Manual

Option 2: Configuration scripts CGT Scriptbin Tool: WriteOvfi Output: Grid BC file

Option 3: Component scripts CGT Scriptlib Tool: AddGridNames, AddBCInfo, WriteBCInfo Output: Component BC file Step 2: Process and write Overflow input file

Option 1: Manual

Option 2: Configuration scripts CGT Scriptbin Tool: BuildOveri Input: Grid BC files; Output: Overflow inputs

Option 3: Component scripts CGT Scriptlib Tool: ProcessBCInfo, WriteOvr2InpFile Input: Component BC files; Output: OVERFLOW input

FOMOCO Inputs

Step 1: Setup integration surfaces

Option 1: Manual

Option 2: Configuration scripts CGT Scriptbin Tool: WriteOvfi Output: Grid BC file

Option 3: Component scripts CGT Scriptlib Tool: AddFomocoSubset, AddFomocoMegaComp, WriteFomoInfo Output: Component Fomo file Step 2: Process and write FOMOCO input file

Option 1: Manual

Option 2: Configuration scripts CGT Scriptbin Tool: BuildOveri Input: Grid BC files; Output: Overflow inputs

Option 3: Component scripts CGT Scriptlib Tool: ProcessFomoInfo, WriteOvr2InpFile Input: Component Fomo files; Output: OVERFLOW input