
Suggar++ Capabilities and
Introduction on Usage

Ralph Noack, Ph.D.
President

Celeritas Simulation Technology, LLC

www.CeleritasSimTech.com

1

Outline

•  Brief Overview of Capabilities
•  Introduction to Suggar++ inputs

– Body Hierarchy
– Transformations
– Grid Input
– Boundary Surfaces

•  Overview of DiRTlib and LibSuggar

2

OVERVIEW OF
SUGGAR++ CAPABILITIES

3

Suggar++ Overview

•  Built upon experience with SUGGAR
– Complete rewrite
–  Improved algorithms

•  Significantly better than SUGGAR
– Performance: memory and speed
– New capabilities

•  Integrated with new Pointwise OGA
capability

4

Suggar++ Grid Types

•  Structured
– Curvilinear
– Analytic

•  Cartesian, Sphere, Cylinder
•  Uniform and stretched
•  Faster, less storage

•  Unstructured
– Tetrahedral, Mixed element, Octree
– General polyhedral currently in development

5

Suggar++ Solver Support

•  Node- and/or cell-centered assembly
–  Has been used to couple different solvers

•  Overflow (node-centered) & Octree (cell-centered)

•  Support for arbitrary structured solver stencil
–  Mark fringes required by flow solver spatial

discretization

•  High-order discretization support
–  Arbitrary number of fringes
–  High-order interpolation for structured grids

6

Suggar++ Overview

•  Hole cutting
– Direct cut, analytic, octree, manual

•  Overlap minimization using general Donor
Suitability Function
– DSF: is this donor suitable for the fringe?

•  Element volume, diagonal, min edge length
•  Element size (bounding box diagonal)
•  New: distance-to-wall

–  Switch to d-to-wall near surfaces

7

Suggar++ Support for
Overlapping Surfaces

•  Integrated surface assembly
–  “Project” on fringe grid onto donor grid
– Structured and/or mixed element grids

•  Integrated USURP to support F&M
integration
–  Integration weights available via file, API to

transfer without file I/O

8

Suggar++ Parallel Execution

•  Threads for shared memory machines
–  Future: dynamically adjust number of threads

•  MPI for distributed memory machines

•  Hybrid parallel execution
–  Use MPI to distribute memory across nodes
–  Use threads within a node

9

Suggar++ Parallel Execution
Decomposition Of Grids

•  Improve work distribution
– Use more processors than original composite

of grids

•  Pre-processing step
– Writes decomposed grids and input file

•  Structured or unstructured grids

•  DCI is combined back to original
composite grids

10

Suggar++ Library

•  Suggar++ is designed for moving body
simulations

•  Link into flow solver for integrated dynamic OGA

•  libSuggar++ API
–  Control execution
–  Provide moving body transformations
–  Transfer DCI

•  With or without DiRTlib

11

Suggar++ Library:
Dynamic Groups

•  Suggar++ Dynamic Groups
– Parallel execution in time
– One group assigned to T, another to T+1,…

•  Overlap OGA execution with flow solution
– Hide OGA execution time

12

Suggar++:
Periodic Passages

•  Turbomachinery simulations
– Solve 1 blade with periodic boundary

conditions instead of full wheel
•  Suggar++ donor stencil reaches across

periodic boundary to other side of passage
•  “Virtual” grid index used to tell solver

velocities need transformation

13

Periodic passage

14

Suggar++ Unstructured Grid Refinement

•  Tetrahedral grids
•  Mixed element grids

– Tet, Hex, Prism, Pyramid
•  Refine orphans and candidate donors
•  List of elements

– Could be provided by flow solutions
– Refine a volume

15

Suggar++ Unstructured Grid Refinement:
Two approaches

•  New component grid
– Copy elements to be refined
– Adds overlap boundaries

•  Need more overlap

•  Altered connectivity
– Modifies original grid
– No new overlap boundaries

16

Composite Grid Formats

•  Structured grids
– Plot3d

•  Unstructured grids
– Some restrictions depending upon input grids
– VGRID
– AFLR/UGRID
– Cobalt
– Fieldview Unstructured
– OpenFOAM

17

Advanced Capabilities

•  Deforming Grids
–  Grid point locations are transferred

•  File
•  API to transfer from flow solver

–  Recompute appropriate quantities

•  Bodies in Close Proximity
–  Orphans result from insufficient overlap
–  Suggar++ will flag appropriate locations as Immersed
–  Solver must impose solid boundary on internal face

•  Immersed boundary condition
18

New Capabilities

•  Numerous bug fixes and speed
improvements

•  Improved robustness of direct cut

•  Improved performance/consistency for
parallel execution

•  PEGASUS 5 interpolated donor quality

•  Direct DCI transfer for structured grids
– Eliminates DCI gather to master rank 19

New Capabilities
Internal Grid Generation

•  Additional analytic grids
– Sphere, cylinder

•  Offbody Cartesian grid generation
– Octree Organized Collection of Cartesian

grids
– Meakin’s Offbody Bricks
– Berger AMR

20

SUGGAR++ INPUT FILE:
XML

21

What is XML?

•  XML stands for eXtensible Markup Language
–  Subset of SGML (Standard Generalized Markup

Language)

•  Text-based language used to “mark up” data
–  Add metadata (data about the data)
–  Self-describing
–  Not really a language but a set of syntax rules that let

you create your own “language”

HTML vs XML

•  HTML is designed for a specific
application: Document display
– Specific set of markup constructs

•  XML has no specific application
–  It is designed for whatever you use it for.

•  HTML syntax rules are sloppy
– Some end tags can be omitted

•  XML has very precise syntax rules

XML Tags/Markup Constructs

•  An XML tag is enclosed in “< >”
–  <start>

•  Must have an associated end tag
–  Same as start tag but with / after <
–  </start>

<name>
 <first>John</first>
 <last>Doe</last>

</name>

•  Empty elements can have implicit end tag
–  <name></name> can be written as <name/>

Hierarchies in XML

•  Each XML tag defines an item or element

•  Elements can be embedded inside start/end pair
of another element
–  Creates a parent/child and sibling/sibling relationship
–  Children define element content
–  Child element must be closed before a parent can be

closed

•  Only one root element allowed

Example Hierarchy

•  Hierarchy for <name> example

name

first

last

John

Doe

<name>
 <first>John</first>
 <last>Doe</last>
</name>

XML Elements Can Have Attributes

•  Attributes
– are name/value pairs associated with an

element
– are always attached to the start tag
– must have a value enclosed in quotes

(either single or double quotes)

•  Place inside of start tag before closing “>”

 <body name=“store”>

Comments in XML

•  Comments in XML
– start with <!-- and end with !
– cannot use -- in the comment string

 <!-- cannot embed double dashes -- !
– cannot be within a tag

 <start <!-- this is illegal--> />

Input Sections

Input Has Three Main Sections

•  Global parameter
– Content of <global>

•  Body Hierarchy
– <body>

•  Grid/Surface definition
– <volume_grid>

•  <boundary_surface>

30

Values Specified by Attributes

•  All input values are specified by element
attributes
– <body name=“root”>
– Data between elements (PCDATA) is ignored

•  Can use as comments, some restricted characters

•  Some attributes are required
– Will abort if not present

•  Other attributes are optional
31

Body Hierarchy

Body Hierarchy Controls Hole Cut

•  A hierarchical grouping of grids/bodies minimizes user
inputs and controls which grids are cut by which surfaces

•  Siblings cut each other
–  Geometry in one body (including all children) cuts all grids in a

sibling body (including all children)
 ROOT

Aircraft Store

Wing Pylon Body
Fin1

Fin2

Fin3

Fin4

XML for Wing/Pylon/Store Hierarchy

<body name=“Root">

 <body name="Aircraft">
 <body name="Wing“/>
 <body name="Pylon“/>
 </body>

 <body name="Store">
 <body name="Body“/>
 <body name="Fin1“/>
 <body name="Fin2“/>
 <body name="Fin3“/>
 <body name="Fin4“/>
 </body>

</body>

Transformations

Transformations

•  Transformations are associated with a body

•  Suggar++ has two different types of transformations
–  Static transformations

•  Applied to the grid coordinates on input
•  Original coordinates are replaced by transformed coordinates

–  Dynamic transformations
•  Flags the body as moving
•  Grid coordinates are left in original coordinates

–  Transformations are always from original coordinate system
–  Not cumulative

•  Transformations are used internally during execution
•  Output grids are transformed

•  Transformations are hierarchical
–  Child body transformations are relative to the parent

Wing/Pylon With 3 Stores

Wing/Pylon With 3 Stores
Input using includes

 <body name="center-store">
 <include filename="Input/store.xml"/>
</body>

<body name="inboard-store">
 <transform> <translate axis="y" value="-2"/> </transform>
 <include name_suffix="-inboard" filename="Input/store.xml"/>
</body>

<body name="outboard-store">
 <transform> <translate axis="y" value="2"/> </transform>
 <include name_suffix="-outboard" filename="Input/store.xml"/>
</body>

Component Grid Input

Suggar++
Current Grid Types

•  Structured
– Curvilinear
– Analytic

•  Cartesian (uniform and non-uniform)
–  Uniform can be defined in input file

•  Cylindrical
•  Spherical

•  Unstructured
– Tetrahedron
– Mixed element

•  Tet, Hex, Prism, Pyramid
– Octree-based Cartesian

<volume_grid> Element

•  Parent element is <body>

•  Associates a grid with a body
–  Actual grid to be used is specified with the filename attribute.

•  A body can have more than one <volume_grid> child
–  Cannot have child <body> and child grids!

•  Required attribute is name=“grid name“

<body name="Wing">
 <volume_grid name="wing grid”>
 </volume_grid>
</body>

<volume_grid>
filename, style attributes

•  Grid file is specified with the attributes…
–  filename=“file”
– style=“style”

•  Both are required

<volume_grid name=“wing”
 filename=“Grids/wing.g” style=“p3d”/>

Boundary Surfaces

Suggar++ Boundary Conditions

•  Suggar++ boundary conditions do not need to
“match” flow solver boundary conditions

•  Some cases where there may be a loose
mapping
–  Flow solver “wall” ~ Suggar++ “solid”
–  Flow solver “farfield” ~ Suggar++ “farfield”
–  Block-to-Block, etc.

Suggar++ Boundary Conditions

•  Many cases where they must be different than
solver boundary conditions
–  Hole cutting geometry must be closed/“water tight”!!!

•  Surface is not solid geometry but must be used as hole
cutting geometry

–  Inlet/Exhaust surface

–  Solver has solid surface but is not needed as cutting
surface

•  Tunnel walls but no grids extend past tunnel walls

–  Suggar++ has a limited set of BCs

Boundary Surface Creation

•  Boundary surfaces are automatically created for
unstructured surface patches
–  Boundary conditions are automatically set for VGRID

files
•  Internal mapping between USM3D BCs and Suggar++ BCs

•  Must be explicitly defined for structured grids
–  If not defined surface is created with a boundary

condition of “overlap”

•  Multiply defining a surface is allowed
–  But is not recommended
–  Useful in limited circumstances

Specifying Boundary Conditions
for Unstructured Grids

•  Boundary surfaces are created automatically

•  Boundary conditions can be specified
–  in the input XML file
–  in auxiliary files

•  for Vgrid file sets
–  projectName.suggarbc

•  for other unstructured grid files
–  gridFilename.suggar_surface_bc
–  gridFilename.suggar_mapbc

•  An auxiliary file can also be used to specify solver BCs in
the output composite grid
–  filename.solver_bc

<boundary_surface> Element

•  Parent element is <volume_grid>, <cartesian_grid>,….

•  It is a container element for content

•  Specifies the surface and boundary condition type for
boundary surfaces in the parent grid

•  Required attribute is name=“surface name”

<boundary_surface name=‘wing’>
</boundary_surface>

<region> Element

•  Parent element is <boundary_surface>
•  Specifies the boundary surface in a structured grid.
•  Required attributes

–  range1=“start:end”
•  Index range in the first index (I for IJK, J for JKL)

–  range2=“start:end”
•  Index range in the second index (J for IJK, K for JKL)

–  range3=“start:end”
•  Index range in the third index (K for IJK, L for JKL)

–  Negative number counts backwards from the end:
•  -1 is the same as max value, -2 is same as max-1 value, etc.

–  Can also use min, max, all

<boundary_surface name=‘wing’>
 <region range1=’21:-21’ range2=‘1:-1’ range3=‘1:1’/>
</boundary_surface>

<boundary_condition> Element

•  Parent element is <boundary_surface>

•  Specifies the boundary condition to be applied at the
boundary surface

•  These are SUGGAR BCs and don’t necessarily match the
flow solver BCs

•  Required attribute type=“boundary type”

<boundary_surface name=‘wing’>
 <region range1=’21:-21’ range2=‘1:-1’ range3=‘1:1’/>

<boundary_condition type=‘solid’/>
</boundary_surface>

<boundary_condition>
types

“overlap” An overset or overlap boundary surface.
“solid” A solid boundary and will be used to define the hole cutting geometry.
“symmetry” A symmetry non-overset boundary surface. The grid points on the

symmetry boundary will be used to determine the value of the symmetry
plane.

“axis” A singular axis where all the grid points in one of the computational
coordinates are collapsed to a point.

“periodic” A periodic boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“cut” The surface is a cut boundary in the structured grid. Both the min and max
boundary surfaces should be specified.

“block-to-block”, “block-block”, “block2block” The surface is a block-to-
block interface to another grid. Requires additional attributes.

“freestream” or “farfield” A freestream non-overset boundary surface
“non-overlap”, “non_overlap”, “nonoverlap”, “non-solid” , “non-*” The surface is

an unspecified non-overset boundary.

<boundary_condition>
optional attributes

•  <boundary_condition> has an optional attribute
solver_bc=“bc string”

•  Allows the user to specify a boundary condition for
the surface to be output to a cobalt.bc file

•  If solver_bc is not included, the SUGGAR BC is
output.

<boundary_condition
 type=‘solid’
 solver_bc=“viscous_wall”/>

Solver BCs for
Unstructured Composite Grid

•  Suggar++ will write selected solver
boundary condition files for the composite
grid
– Vgrid

project.mapbc file

– Cobalt
 composite_grid_filename_cobalt_bc

– Other unstructured grid formats
composite_grid_filename.suggar_mapbc

Setting Solver BCs for
Unstructured Composite Grid

•  Solver BCs can be set from auxiliary files
associated with each component grid
–  Vgrid

project.mapbc file

–  Cobalt
•  grid_filename_cobalt_bc
•  basename.cobalt_bc
•  Where basename = grid_filename with trailing suffix

removed

–  Other formats
•  grid_filename.solver_bc
•  grid_filename.suggar_mapbc

Overlapping Surface Grids

•  Overlapping surface grids present several
additional complexities

– Surfaces in a grid can be associated with
different geometry components

– Overlapping surfaces will have different
discrete representations

– Overlapping surfaces require special
treatment to eliminate double counting in
Force and Moment integration

Overlapping Surface Grids:
Different Discrete Representations

•  Surfaces that overlap on geometry with
curvature will have different discrete
representations

•  Difficulties arise when the tangential
spacing is “large” relative to the curvature
and the normal spacing

•  Special procedures are required to
properly find appropriate donors

Overlapping Surface Grids:
Different Discrete Representations

•  “Projection” of one surface onto the other is required to
properly locate donors

•  Orphans result without “projection”

Cell center in Grid B is outside Grid A

Surface Assembly

•  Grids are not actually projected
–  Grid points are not changed

•  Fringe points will be shifted appropriately during
the donor search

•  Surface Assembly procedure is use to find the
shift for each fringe point
–  Relative to overlapping surface in each donor grid

•  A fringe point will have different shifts/offsets for each donor
grid

Surface Assembly Procedure

•  For each surface grid point (node-
centered) or face center (cell-centered)
– Location appropriate donor faces in

overlapping grid
– Find normal distance from surface location to

the surface donor face
•  Save deviation and the surface normal

– Adjacent element is the volume donor for
node-centered surface points

Volume Donor Search Uses Surface Assembly

•  Volume fringes will be shifted using the
surface assembly deviation

– Shift will decay for points away from the
surface

–  Interpolation deviation will be computed using
the shifted fringe point

•  Flow solver will not have the shift so computing the
interpolation deviation in the flow solver will not
give the same result

Integral Surface Assembly

•  SUGGAR uses a separate “surfasm” utility
to obtain the deviation between surfaces
– donors.xml contains surface donors and

displacement

•  Suggar++ performs the surface assembly
internally
– Enabled with <surface_assembly/> element

<surface_assembly/> element

•  Parent element is <global>

•  Required attribute
–  max_deviation_allowed=“value in grid units”

•  Ignore surface overlap if deviation is larger than the specified value

•  Optional attribute
•  max_angle_deviation_allowed=“angle in degrees”
•  Ignore surface overlap if angle between donor face and normal at

surface fringe point is larger than the specified value

•  <surface_assembly max_deviation_allowed=“0.0001”/>

Checking Surface Assembly

•  Work/max_surface_assembly_deviation.txt
–  Surface deviation for each surface in all grids

•  Work/SurfaceDeviation/Grid-#-name/surfname
–  # is the composite grid index
–  name is the grid name
–  surfname is surface name
–  Directory contains PLOT3D grid and Q file to visualize the

deviation:
•  Grid is multi-block PLOT3D, with iblank, single precision, unformatted

–  DonorGrid-#-name.p3dwibu
•  Q is multi-block PLOT3D Overflow Q file, with iblank, single precision,

unformatted, one dependent variable: surface deviation
–  DonorGrid-#-name.p3dqou

Visualizing Surface Deviation

Integrating Force And Moments
On Overlapping Surfaces

•  Special treatment to eliminate double counting in
force and moment integration

–  Panel weights
•  Weight factor between 0 & 1 for each integration surface

face/panel

–  Single valued (water tight) integration surface
•  Remove overlap, glue remaining portions of original surfaces

together using new triangles

•  Tools
–  FOMOCO
–  USURP/PolyMixsur

Suggar++ has integrated USURP capability

•  Similar but not identical to the USURP utility
–  Different coding
–  Uses CLIPPER for polygon clipping

•  more robust than GPG used in USURP

–  Triangulation routines are different than USURP

•  Panel weights
–  Included in DCI file: Can be retrieved via DiRTlib
–  Written to files

•  Can create zipper grid
–  Not sufficiently robust

<usurp> Element

•  Parent element is <global>

•  No required attributes

•  Lots of optional attributes

<global>
 <usurp/>

…

<usurp> Element
Output Files

•  panels_weights.txt
– List of panel index, area_ratio, area,

ratio*area, is_clipped, number_contours

•  Surface panels and triangles
– Tecplot file: usurp-surfaces.dat
– Flex file for gviz: usurp-surfaces.flex

•  Panels and clipped polygons
– Flex file for gviz: usurp_panels.flex

<usurp> Element
Output Files

•  If create_watertight_surfaces=“yes”

•  Zipper grid:
– Quads and zipper triangles

•  zipper_surface_faces.flex
– Zipper triangles with quads replaced by

triangles
•  zipper_surface_faces_all_tris.flex
•  usurp-triangles.dat (Tecplot file)

Suggar++ USURP output for
Robin Helicopter Fuselage

Suggar++ USURP output for
WingBody

Zipper grid:
Triangle contain only points
in the original grid

<usurp> Control Attributes

•  polygon_ranking_basis='panel|patch'
–  Select the approach for prioritizing the choice of panels. Default

value is 'panel'.

polygon_ranking_basis=’ panel'

•  polygon_ranking_basis=’panel'
–  Priority is local: panel/face with smallest area

polygon_ranking_basis='patch’

•  polygon_ranking_basis='patch’
–  Priority is based upon the surface with the most surface fringes

More Complex Example

Utilities Provided With Suggar++

Utilities Provided With Suggar++
Grid Refinement/Derefinement

•  RefineGrids
– Refine structured grids by factor of 2

•  DerefineGrids
– Derefine structured grids by factor of 2

•  Scripts to generate a sequence of
derefined grids

Utilities Provided With Suggar++

•  Convert
–  Convert between different unstructured grid formats

•  Mirror
–  Mirror a set of structured grids and Input.xml

•  report_number_grids
–  Output the number of component grids

•  cmp_dci
–  Compare the DCI in two files

Suggested Work Process

General Suggestions
Building Input

•  Build input in pieces
–  Or use <skip> </skip> to hide complete subtrees

•  Check and Indent XML file
–  xmllint -format
–  xmlformat.pl
–  Emacs

•  Visualize surfaces
–  Especially solid surfaces
–  Color collar surfaces differently

•  Put “collar” in surface name
–  <boundary_surface name=“kmin-solid-collar-with-sting”>

Be Very Careful With

•  <boundary_surface const_coord=“”>
– Make sure have right value on right surface
– Look at composite grid

•  Reorientation of grid blocks without
appropriate changes to input

•  Manual cutting and symmetry planes
– Can cut wrong direction

General Suggestions
Run Suggar++

•  Redirect the Suggar++ output
– suggar++ -reopen

•  During initial testing reduce wall clock time
– suggar++ -ignore-composite-grid
– suggar++ -ignore-minimize-overlap

•  Check suggar++progress during execution
– One line added at start of each stage of

execution

Suggested Directory Structure

•  We suggest putting critical input files in
directories to minimize the chance of
accidental removal

– Put all your component grid files in Grids/

– Put your input files in Input/
•  Suggar++ will default to read Input/Input.xml

–  “suggar++ Input/Input.xml” is same as “suggar++”

Suggest Use Scripts

•  We suggest using standard scripts

– Run
•  Execute Suggar++ and check for errors

– Clean
•  Remove (LOTS) of files that Suggar++ can write

Example Run Script

#!/bin/bash!
!
STDERR=out.stderr++!
!
$SUGGARPP_OPT_EXE -reopen $*!
!
EXIT_STATUS=$?!
if [[$EXIT_STATUS != 0]];!
then!
 echo "FAILURE: suggar++ has failed with exit status $EXIT_STATUS"!
 grep "Error:" $STDERR!
!
 exit $EXIT_STATUS!
fi!
!
if [[-e summary_zipper.log]]; then!
 cat summary_zipper.log >> summary.log!
fi!
!

Example Clean Script

rm -f allgrids.p3dudl* *.dci* out* *log *gress!
rm -f panels_weights.txt Suggar++Error.backtrace!
rm -f usurp* zipper_*.flex cut_elements*!
rm -rf Work!
rm -rf *_trace_*!

General Suggestions
Check Suggar++ Output

•  Look at
– summary.log
– Standard error output file

•  -reopen will write to out.stderr++

•  Visualize the DCI
– Look at orphans
– All blanked points

•  May have flood fill leak if entire grid is blanked out

Suggar++ and The New
Pointwise Release

88

Pointwise Has Integrated Interface To
Overset Grid Assembly!

•  Currently supports PEGASUS 5 and
Suggar++

•  Within pointwise
– Allows user to define inputs via GUI

•  Input definition is via XML file

– Run OGA

– Visualize results

– Modify grid system
– And more…

89

Suggar++ Support In Pointwise

•  Some Suggar++ input elements are not
visible in pointwise GUI
– Handled internally in pointwise

•  <volume_grids>
•  <boundary_surface> and content

– Not supported in pointwise
•  Analytic grids

–  <cartesian_grid>, <cylindrical_grid>, <spherical_grid>

90

Suggar++ Input Definition Support In
Pointwise

•  New input definition file can be provided
with Suggar++ release

•  Replace installed file or set an
environment file

91

Overview of
DiRTlib and LibSuggar

92

DiRTlib

•  DiRTlib is: Donor interpolation Receptor
Transaction library

•  It is a solver neutral library to provide the
required capability for using overset composite
grids
–  Work with most ANY flow solver
–  Knows nothing of solver connectivity
–  Does not depend upon a specific solver storage

93

DiRTlib Design Goal

•  Goal is to minimize modifications required to flow
solver
–  Provide a few functions to DiRTlib

•  Interface to solver data

–  Insert a few function calls

•  Most solvers utilize an IBLANK array
–  Not required but in most cases easiest approach

94

DiRTlib Capabilities

•  Supports variable number of Dependent Variables

•  Segregated Solvers

•  Single Unstructured Grid
–  Unstructured grid solver sees a single composite grid.
–  Domain connectivity is based upon set of component grids

•  Parallel Execution
–  Decomposition

•  Defined by solver
•  Can decompose structured grids

95

DiRTlib Capabilities

•  Domain Connectivity Information
–  Files: SUGGAR/Suggar++, Pegasus 5
–  LibSuggar/libSuggar++

•  Donor Details
–  Some solvers need to build interpolation into linear

solution

•  Relative Motion
–  What cells are moving
–  What is transformation to position body

96

Using DiRTlib

•  Solver interface functions
–  DiRTlib does not (or rarely) directly access solver

storage
–  Solver provides interface functions that DiRTlib calls

to get/put values in solver storage

•  Add a few calls to control execution
–  Initialize library
–  Perform interpolation/apply fringe values

97

Programming Language Support

•  Library is written in C
–  Functions names start with drt_

•  FORTRAN interface written in C
–  Functions names start with drtf_
–  Supports names with 0,1,2 appended underscores
–  Long function names are abbreviated
–  drt_fortran_interface.c provides FORTRAN wrappers
–  libdirt_interface.f90 can be compiled to provide

module that provides function prototypes

98

libSuggar: DC API

•  Domain Connectivity (DC) API (libSuggar) to allow
integrated overset grid assembly process

•  Flow solver calls DC API (libSuggar) to control execution
–  libSuggar can be called from dedicated rank

•  Required splitting MPI communicator
•  Modify solver to execute DC only on dedicated rank
•  Distributes SUGGAR memory usage

–  Can still write/read DCI file

•  Domain Connectivity Exchange (DCX) calls allow DCI to
be transferred via calls without writing/reading DCI file

99

Programming Language Support

•  Library is written in C or C++
–  Functions names start with dc_ or dcx_

•  FORTRAN interface written in C
–  Functions names start with dcf_ or dcxf_
–  Supports names with 0,1,2 appended underscores
–  Long function names are abbreviated
–  F90 module can be compiled to provide function

prototypes

100

Example DiRTlib and LibSuggar++ Calls

•  Will present a set of DiRTlib and
LibSuggar++ function calls

•  Illustrative of how few calls are required
– Not necessarily all that are required or correct

order

•  Parallel execution requires conditionals so
some calls are only executed on specific
processors

101

Example DiRTlib and LibSuggar++ Calls
Initialization

•  drt_set_num_data_values_all_grids(N)
•  drt_Init(PutDataValue,GetDataValue,...)
•  dcx_set_dci_master_rank_in_group_comm(0)
•  drt_rank_dci_only()
•  drt_rank_flow_only()
•  drt_pll_init(0,0)
•  dc_init()

102

Example DiRTlib and LibSuggar++ Calls
Provide DiRTlib with Solver Decomposition

•  drt_init_str_subgrid_decomposition_map()
•  drt_map_str_subgrid_to_rank(...)
•  drt_end_str_subgrid_decomposition_map()

•  Other calls for unstructured grids

103

Example DiRTlib and LibSuggar++ Calls
Time Step: Specify Body Transformations

•  dc_begin_motion_input()
•  dc_add_motion_input(...)
•  dc_end_motion_input()
•  dc_parse_motion()

104

Example DiRTlib and LibSuggar++ Calls
Time Step:

•  dc_compute_dci()

•  drt_get_dci()

•  drt_generate_transmit_apply()

•  dc_release_dci()

105

106

Commercial distribution and support
for Suggar++ provided by

Celeritas Simulation Technology, LLC

http://www.CeleritasSimTech.com

Exportable under an EAR-99 license

